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The interdependence of the equations makes an analytic solution di�cult, however,

we can use numerical methods to get solutions for the ions and initial conditions of

interest. We can use a \Runge-Kutta" method for a rather straightforward solution (see,

for example, Press et al. 1992). This basically involves integrating the right hand side of

the above equations from time t to t+�t, assuming a constant integrand during the small

time interval �t.

However, before applying numerical techniques directly we must solve for the equi-

librium initial conditions to �nd the values for �

�

i

. Unfortunately, we do not know the

initial equilibrium fractional abundances appropriate for our idealized equations. If we use

the equilibrium values derived by CLOUDY for the mutiple-ion case, the time-dependent

solution will be unstable. Although, they may have been adequate for qualitative esti-

mates in the two-ion case, the CLOUDY values do not satisfy the equilibrium conditions

dx

i

=dt=0 at t=0, for our simpli�ed equations. In order to determine the recombination

delay function, we must �rst solve the idealized equilibrium equations using exactly the

same parameters which we use to solve the time-dependent equations.

In equilibrium, the above equations simplify considerably. For any ion i, we have:
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