
27

J

�

(t)

z

is the incident ux at time t, �
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(x) is the ionization edge for the ion X
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is the frequency-dependent photoionization cross section for the ion X
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). Let �
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In equilibrium, at �=0, we have: �
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. We further de�ne: f(�) � 1 + (�)k, so we have:
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+ xf(�) = 1 :

This is a \linear di�erential equation of the �rst order", and can be solved by the use of

an integrating factor (cf. Rainville 1989). Let !(�) =
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Integrating both sides from 0 to � , and applying our initial condition, we have:
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:

We can now determine the fractional abundance of the X

+n

ion, x, as a function of time

given an initial fractional abundance and a relative light curve (�), such that (0) = 1.

Note that the fractional abundance calculated by this solution will be correct only for this

idealized case, neglecting thermal changes and other e�ects which were included within

CLOUDY to derive our equilibrium fractional abundances.

To get a more physical sense of our solution, let us assume that the photon ux

changes instantaneously at t=0 to a constant level (� > 0) = c. We then have: !(�) =

�(1 + ck), and the solution is:
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