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ABSTRACT

We describe an algorithm for the extraction of the angular power spectrum of an intensity field, such as the
cosmic microwave background (CMB), from interferometer data. This newmethod, based on the gridding of
interferometer visibilities in the aperture plane followed by a maximum likelihood solution for band powers,
is much faster than direct likelihood analysis of the visibilities and deals with foreground radio sources,
multiple pointings, and differencing. The gridded aperture-plane estimators are also used to construct
Wiener-filtered images using the signal and noise covariance matrices used in the likelihood analysis. Results
are shown for simulated data. The method has been used to determine the power spectrum of the CMB from
observations with the Cosmic Background Imager, and the results are given in companion papers.

Subject headings: cosmic microwave background — methods: data analysis

1. INTRODUCTION

The technique of interferometry has been widely used in
radio astronomy to image the sky using arrays of antennas.
By correlating the complex voltage signals between pairs of
antennas, the field of view of a single element can be subdi-
vided into ‘‘ synthesized beams ’’ of higher angular resolu-
tion. In the small-angle approximation, the interferometer
forms the Fourier transform of the sky convolved with the
autocorrelation of the aperture voltage patterns. In stan-
dard radio interferometric data analysis, as described, for
example, in the text by Thompson, Moran, & Swenson
(1986) and the proceedings of the NRAO Synthesis Imaging
School (Taylor, Carilli, & Perley 1999), the correlations or
visibilities are inverse Fourier transformed back to the
image plane. However, there are applications such as esti-
mation of the angular power spectrum of fluctuations in the
cosmic microwave background (CMB) where it is the distri-
bution of and correlation between visibilities in the aperture
or (u, v)-plane that is of most interest.

In standard cosmological models, the CMB is assumed to
be a statistically homogeneous Gaussian random field
(Bond & Efstathiou 1987). In this case, the spherical har-
monics of the field are independent and the statistical prop-
erties are determined by the power spectrum Cl, where l
labels the component of the Legendre polynomial expan-
sion (and is roughly in inverse radians). Bond & Efstathiou
(1987) showed that in cold dark matter–inspired cosmologi-
cal models, there would be features in the CMB power spec-
trum that reflected critical properties of the cosmology.

Recent detections of the first few of these ‘‘ acoustic peaks ’’
at l < 1000 in the power spectrum (Lange et al. 2001;
Hanany et al. 2000; Lee et al. 2001; Halverson et al. 2002;
Netterfield et al. 2002) have supported the standard infla-
tionary cosmological model with �tot � 1. Measurement of
the higher l peaks and troughs, as well as the damping tail
due to the finite thickness of the last scattering surface, is the
next observational step. Interferometers are well suited to
the challenge of mapping out features in the CMB power
spectrum, with a given antenna pair probing a characteristic
l proportional to the baseline length in units of the observing
wavelength (a 100� projected baseline corresponds to
l � 628; see x 3).

There are many papers in the literature on the analysis of
CMB anisotropy measurements, estimation of power spec-
tra, and the use of interferometry for CMB studies. General
issues for analysis of CMB data sets are discussed in Bond,
Jaffe, & Knox (1998, 2000). Hobson, Lasenby, & Jones
(1995) present a Bayesian method for the analysis of CMB
interferometer data, using the three-element Cosmic Aniso-
tropy Telescope data as a test case. A description of analysis
techniques for interferometric observations from the Degree
Angular Scale Interferometer (DASI) was presented in
White et al. (1999a, 1999b), while Halverson et al. (2002)
report on the power spectrum results from the first season of
DASI observations. Ng (2001) discusses CMB interferome-
try with application to the proposed AMIBA instrument.
Hobson & Maisinger (2002) have recently presented an
approach similar to ours and demonstrate their technique
on simulated Very Small Array (VSA) data; a brief compari-
son of their algorithm with ours is given in Appendix C.

In this paper we describe a fast gridded method for the (u,
v)-plane analysis of large interferometric data sets. The basis
of this approach is to grid the visibilities and perform maxi-
mum likelihood estimation of the power spectrum on these
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compressed data. Our use of gridded estimators is signifi-
cantly different from what has been done previously. In
addition to power spectrum extraction, this procedure has
the ability to form optimally filtered images from the
gridded estimators and may be of use in interferometric
observations of radio sources in general.

We have applied our method to the analysis of data from
the Cosmic Background Imager (CBI). The CBI is a planar
interferometer array of 13 individual 90 cm Cassegrain
antennas on a 6 m pointable platform (Padin et al. 2002). It
covers the frequency range 26–36 GHz in 10 contiguous 1
GHz channels, with a thermal noise level of 2 lK in 6 hr and
a maximum resolution of 40 limited by the longest baselines.
The CBI baselines probe l in the range of 500–3900. The 90
cm antenna diameters were chosen to maximize sensitivity,
but their primary beam width of 45<2 (FWHM) at 31 GHz
limits the instantaneous field of view, which in turn limits
the resolution in l. This loss of aperture plane resolution can
be overcome by making mosaic observations, i.e., observa-
tions in which a number of adjacent pointings are combined
(Ekers & Rots 1979; Cornwell 1988; Cornwell, Holdaway,
& Uson 1993; Sault, Staveley-Smith, & Brouw 1996). In the
CBI observations, mosaicking a field several times larger
than the primary beam has resulted in an increase in resolu-
tion in l by more than a factor of 3, sufficient to discern
features in the power spectrum.

The first CBI results were presented in Padin et al. (2001,
hereafter Paper I), using earlier versions of the software that
did not make use of (u, v)-plane gridding, and were far too
slow to be used on larger mosaicked data sets. It was there-
fore essential to develop a more efficient analysis method
that would be fast enough to carry out extensive tests on the
CBI mosaic data. The software package described below
has been used to process the first year of CBI data. In the
companion papers by Mason et al. (2003, hereafter Paper
II) and Pearson et al. (2003, hereafter Paper III), the results
from passing CBI deep field data and mosaic data, respec-
tively, through the pipeline are presented. This paper is
Paper IV in the series. The output from this pipeline is then
used to derive constraints on cosmology (Sievers et al. 2003,
hereafter Paper V). Finally, analysis of the excess of power
at high l seen in results shown in Paper II in the context of
the Sunyaev-Zeldovich effect is carried out, again using the
method presented here, in Bond et al. (2003, hereafter
Paper VI).

An introduction to the properties of the CMB power
spectrum, the response of an interferometer to the incoming
radiation, and the computation of the primary beam are
given in xx 2, 3, and 4, respectively. The gridding process is
presented in x 5, followed by a description of the likelihood
function and construction of the various covariance matri-
ces in x 6. Details on the maximum likelihood solution and
the calculation of window functions and component band
powers are given in x 7, while x 8 presents our method for
making optimally filtered images from the gridded estima-
tors. Finally, a description of the CBI implementation of
this method and the performance of the pipeline, including
demonstrations using simulated CBI data sets, is given in
x 9, followed by a summary and conclusions in x 10.

2. THE CMB POWER SPECTRUM

At small angles, the curvature of the sky is negligible and
we can approximate the spherical harmonic transform of

the temperature field T(x) in direction x as its Fourier
transform ~TTðuÞ (Bond & Efstathiou 1987), where u is the
conjugate variable to x. We adopt the Fourier convention

~FFðuÞ ¼
Z

d2xFðxÞe�2�iu xx , FðxÞ ¼
Z

d2u ~FFðuÞe2�iu x x

ð1Þ

of Bracewell (1986), Thompson et al. (1986), and Taylor
et al. (1999). In terms of the multipoles l,

~TTðuÞ2
D E

� Cl ; l þ 1
2 � 2� uj j ; ð2Þ

which we simplify to l ¼ 2� uj j for the l > 100 of interest in
this paper. For the low levels of anisotropy seen in the CMB
on these scales, it is convenient to give T in units of lK, and
thusClwill be in units of lK2.

Because the CMB is assumed to be a statistically homoge-
neous Gaussian random field, the components of its Fourier
transform are independent Gaussian deviates:

~TTðuÞ~TT� u0ð Þ
� �

¼ Cð uj jÞ�2 u� u0ð Þ ; ð3Þ

where Cð uj jÞ ¼ C2� uj j. Because TðxÞ is real, its transform
must be Hermitian, with ~TTðuÞ ¼ ~TT�ð�uÞ, and therefore

~TTðuÞ~TT u0ð Þ
� �

¼ ~TTðuÞ~TT� �u0ð Þ
� �

¼ Cð uj jÞ�2 uþ u0ð Þ : ð4Þ

Note that it is common to write the CMB power spectrum
Cl in a form

Cl ¼
lðl þ 1Þ

2�
Cl �

l2

2�
Cl , Cð uj jÞ � 2� uj j2Cð uj jÞ ð5Þ

(White et al. 1999a; Bond et al. 1998, 2000). Constant C
corresponds to equal power in equal intervals of log l.

Although the power spectrum Cl is defined in units of
brightness temperature, the interferometer measurements
carry the units of flux density S� (jansky, 1 Jy ¼ 10�26 W
m�2 Hz�1). In particular, the intensity field on the sky I�ðxÞ
has units of specific intensity (W m�2 Hz�1 sr�1, or Jy sr�1),
and thus to convert between I� and T we use
I�ðxÞ ¼ fTð�ÞTðxÞwith the Planck factor

fT ð�Þ ¼
2�2kBgð�;T0Þ

c2
; gð�;T0Þ ¼

x2ex

ex � 1ð Þ2
; x ¼ h�

kBT0
;

ð6Þ

where g corrects for the blackbody spectrum. Note that we
have treated the temperature T as small fluctuations about
the mean CMB temperature T0 ¼ 2:725 K (Mather et al.
1999), and thus the g appropriate to T0 is used with g � 0:98
at � ¼ 31 GHz.

We are not restricted to modeling the CMB. For example,
we might wish to determine the power spectrum of fluctua-
tions in a diffuse galactic component such as synchrotron
emission or thermal dust emission. In this case, one might
wish to express I in Jy sr�1 but take out a power-law spectral
shape

I� ¼ f0ð�ÞI0; f0ð�Þ ¼
�

�0

� ��

; ð7Þ

where � is the spectral index and f0(�) is the conversion
factor that normalizes to the intensity I0 at the fiducial
frequency �0. Note that this normalization is particularly
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useful for fitting out centimeter-wave foreground emission,
which tends to have a power-law spectral index in the range
�1 < � < 1 that is significantly different from that for the
thermal CMB (� � 2). In addition, foregrounds will also
tend to have a power spectrum shape different from that of
CMB, which must be included in the analysis (see x 6.4).

3. RESPONSE OF THE INTERFEROMETER

A visibility Vk formed from the correlation of an interfer-
ometer baseline between two antennas with projected sepa-
ration (in the plane perpendicular to the source direction) b
meters observed at wavelength � meters measures (in the
absence of noise) the Fourier transform of the sky intensity
modulated by the response of the antennas (Thompson
et al. 1986)

VðuÞ ¼
Z

d2xAðxÞIðxÞe�2�iu x x; u ¼ b

�
; ð8Þ

whereAðxÞ is the primary beam and u ¼ ðu; vÞ is the conju-
gate variable to x. For angular coordinates x in radians, u
has the dimensions of the baseline or aperture in units of the
wavelength. The Fourier domain is also referred to as the (u,
v)-plane or aperture plane in interferometry for this reason.

We define the direction cosines

xk ¼ ðDxk;DykÞ; Dxk ¼ cos �k sinð�k � �0Þ ;
Dyk ¼ sin �k cos �0 � cos �k

� sin �0 cosð�k � �0Þ ð9Þ

between the point at right ascension and declination �k, �k
and the center of the mosaic �0, �0. For the CBI, data are
taken keeping the phase center fixed on the pointing center
xk by shifting the phase with the beam and rotating the plat-
form to maintain constant parallactic angle during a scan,
so that the response to a point source at the center of the
field IðxÞ ¼ �2ðx� xkÞ is constant, and thus

AðxÞ ¼ Akðx� xkÞe2�iuk x xk ð10Þ

in equation (8), where Ak is the normalized primary beam
response at the observing frequency of visibility k. Then, by
application of the Fourier shift theorem, it is easy to show
that

Vk ¼
Z

d2xAkðx� xkÞI�kðxÞe�2�iuk x ðx�xkÞ þ ek

¼
Z

d2v ~AAkðuk � vÞ~II�kðvÞe2�iv
x xk þ ek ; ð11Þ

where ~AAk is the Fourier transform of the primary beam Ak

and I�ðxÞ is the sky brightness field (expressed in units such
as Jy sr�1) with transform ~II�ðvÞ. The instrumental noise on
the complex visibility measurement is represented by ek.

The (u, v)-plane resolution of an interferometer in a single
pointing is thus limited by the convolution with ~AA. How-
ever, these subaperture spatial frequencies can be recovered
by using the phase gradient in the exponential exp 2�iv xxkð Þ
from a raster of mosaic pointings fxkg, provided that the
spacing of the pointings is sufficiently small to avoid aliasing
as discussed in Appendix A.

To aid us later on, we introduce a convolution kernel

PkðvÞ ¼ fk ~AAkðuk � vÞe2�iv x xk ð12Þ

and thus

Vk ¼
Z

d2vPkðvÞ~TTðvÞ þ ek ; ð13Þ

where fk ¼ fT ð�kÞ is the Planck conversion factor for the
CMB given in equation (6). It is easiest to write these in
operator notation, with

V ¼ P~TT þ e ; ð14Þ

where V and e are the visibility and noise vectors, respec-
tively, P is our kernel, and ~TT is the transform of the temper-
ature field. In this representation ~TT can be thought of as a
vector of cells in (u, v)-space.

4. THE PRIMARY BEAM

In order to determine the response of the array to the
radiation field, we need to know the primary beam AðxÞ of
the antenna elements and its Fourier transform ~AAðuÞ. In
general, for each frequency channel, each baseline has a pri-
mary beam that is the Fourier transform of the cross-corre-
lation of the voltage illumination functions across the
aperture of each antenna (see Thompson et al. 1986 for a
detailed treatment of the interferometer response). For a
real and symmetric primary beam that is identical between
antennas, then the transforms are symmetric and real, and
we can ignore the differences between cross-correlation and
convolution and write

~AAðuÞ ¼ ĝg ? ĝg , AðxÞ ¼ ~gg2
�� �� ð15Þ

for the voltage illumination function ĝgðr; �Þ across the
radius of the aperture r ¼ rj j at frequency �, where ~gg is the
Fourier transform of ĝg. The CBI beams have been measured
and are nearly identical and symmetric, and thus we will use
a single mean primary beam and its transform for the array.
For a heterogeneous array, the individual beams can be
used with some added complication.

For most antennas, such as those used in the CBI, the pri-
mary beam width scales linearly with observing wavelength,
and thus ĝgðrÞ is approximately constant with wavelength.
Then, we can define G(r) as the normalized aperture auto-
correlation function and write

~AAkðuÞ ¼
1

A0
Gð uj j�kÞ ð16Þ

for a channel centered at wavelength �k, with

A0 ¼
Z

d2uGð uj j�kÞ ¼
2�

�2
k

Z 1

0

r drGðrÞ ð17Þ

normalizing the response to give unity gain on sky at the
beam center [Að0Þ � 1]. If gðrÞ ¼ ĝgðrÞ=gð0Þ, then GðrÞ ¼
g ? g.

The two-dimensional primary beam response, AðxÞ, is
determined by means of measurements of a bright radio
source over a two-dimensional grid of offset pointings cen-
tered on the source. The central lobe of AðxÞ for the CBI is
well approximated by a circular Gaussian, which is charac-
terized by its dispersion �x, which is related to the FWHM
ax by �x ¼ ax= 8 ln 2ð Þ1=2. The Fourier transform of an
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infinite circular Gaussian is given by

AðxÞ ¼ e�x2=2�2x , ~AAðuÞ ¼ 1

2��2
u
e� uj j2=2�2u ; �u ¼

1

2��x
;

ð18Þ

where �u is the Gaussian dispersion in Fourier space. The
functionG(r) is therefore

GðrÞ ¼ e�r2=2r2g ð19Þ

for Gaussian radius rg ¼ ��u. For the CBI the measured pri-
mary beam (see Paper III) has ax ¼ 45<2ð31 GHz=�Þ, so
�u ¼ 28:50 at 31 GHz (� ¼ 0:967 cm), which corresponds to
rg ¼ 27:56 cm.

For the CBI software pipeline, instead of using a
Gaussian approximation to G(r), we have chosen to model
the antenna illumination g(r) as a Gaussian truncated at
both the dish edge and the secondary blockage radius

gðrÞ ¼

0; rj j � rinner ;

e� r=sð Þ2 ; rinner < rj j < D

2
;

0; rj j � D

2
;

8>>>><
>>>>:

ð20Þ

where for the CBI antennas rinner ¼ 7:75 cm. Note that if
g(r) and G(r) were infinite circular Gaussians, then s ¼ rg. A
best-fit taper parameter s is obtained using the measured
primary beam A, giving s ¼ 30:753 cm or an edge taper of
0.118 (�18.6 dB of power) at the dish edge.We then numeri-
cally tabulate the autocorrelation G(r) assuming s ¼ 30:753
cm, which is then interpolated in the code when ~AA is
required. This model is a better fit to the observed beam
than a pure Gaussian beam (see Fig. 1 in Paper III for a plot
of this model).

The resolution in (u, v)- or l-space is set by the width of
~AAkðuÞ. For a Gaussian approximation to the beam, the dis-
persion in multipole l is �l ¼ 2��u ¼ 1=�x, and the FWHM
is al ¼ 8 ln 2=ax. For ax ¼ 45<2 at 31 GHz we have FWHM
al ¼ 422 (�l ¼ 179). Given that features are expected in the
power spectrum of widths significantly less than this, it is
highly desirable to reduce the effective resolution width of
the CBI by at least a factor of 3 using mosaicking.

5. GRIDDED ESTIMATORS

The principal problem in using likelihood (see x 6) to
determine confidence limits on the power spectrum for CBI
data is the large number of visibilities compounded by the
large number of mosaic pointings (typically 7� 6 or larger).
Even a modest reduction in the number of matrix elements
passed to the likelihood calculation will greatly aid the com-
putation. This suggests that we grid the visibilities before
computing the likelihood function. For an effective resolu-
tion in the aperture plane determined by the primary beam
and mosaic size, there is little use in sampling below this
smearing scale, and we can define an optimum gridding
scheme that minimizes the quantity of data and information
loss (the gridding is a form of compression).

We implement this by defining estimators DðuÞ for the
true complex brightness transform that are linear combina-
tions of the measured visibilities. These estimators bin
together data from the different frequency bands and

mosaic pointings. Thus, a direct sum of visibilities taken at
the same u but over the whole mosaic x will result in an esti-
mator that has a higher effective resolution in the (u, v)-
plane. The result is that we can speed up the likelihood esti-
mation at the cost of complicating the covariance matrix. In
general, this matrix can be computed relatively quickly as it
is an N2 process, and thus this is a worthwhile trade-off ver-
sus the N3 cost of calculating the likelihood. The estimators
derived in Appendix A are not orthogonal combinations of
the original visibilities, and thus some information loss is
expected. However, the tests performed in x 9.1 show that
these estimators are unbiased, and comparisons to results
obtained using the visibilities directly show that there is no
noticeable loss in sensitivity. Thus, our gridding can be con-
sidered to be an efficient form of (lossy) compression using
the beam as a signal template.

In Appendix A we argue that a Di formed by a linear com-
bination of visibilities will give an estimate of the weighted
average of ~II or ~TT around (u, v) locus ui. We have from
equation (A13)

D ¼ QV þ �QQV� ; ð21Þ

where the kernel Q is defined in equation (A13) and the ker-
nel for the conjugate visibilities �QQ is defined in equation
(A17). In particular,

Qik ¼ !k

zi
~AA�k ðuk � uiÞe�2�iui xxk ;

�QQik ¼ !k

zi
~AA�k ð�uk � uiÞe�2�iui x xk ; ð22Þ

where zi is the normalization factor given in equation (A21)
and !k ¼ ��2

k is the visibility weight given in equation (A19).
By operating with the gridding kernel on equation (14),

we get

D ¼ R~TT þ n; R ¼ QP þ �QQ�PP; n ¼ Qeþ �QQe� ; ð23Þ

where we define R as the convolution kernel that operates
on the transform of the intensity (the gridded version of P)
and n is the gridded noise. The conjugate to P defined in
equation (12) is given by

�PPkðvÞ ¼ fk ~AAkð�uk � vÞe2�iv x xk ; ð24Þ

which gathers the conjugate visibilities under the transfor-
mation uk ! �uk.

Although it is not necessary to do so, it is convenient to
construct the Di on a regular lattice in ui with a spacing du.
Thus, the grid ‘‘ cells ’’ represented by the Di represent an
interpolation using Q of the visibilities onto the (u, v)-plane.
This will be useful when using the estimators to form filtered
images (x 8).

If it is desired that the visibilities be used directly, for
example, when the data sets are small, then the ungridded
case can be recovered by setting Qik ¼ �ik and �QQik ¼ 0, giv-
ing D ¼ V and R ¼ P, with no loss of generality in the
derivations.

6. THE LIKELIHOOD FUNCTION

To carry out the power spectrum estimation, we form the
likelihood of the data given covariance matrices for the sig-
nal, noise, and foregrounds. Since the estimators are linear
combinations of the visibilities, which we assume are made
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up of Gaussian noise and Gaussian signal components, we
can use a multivariate Gaussian probability distribution to
describe the estimators also. Because D is complex, it is eas-
ier to deal with the real and imaginary parts by packing
them together in a double-length real vector

d ¼
ReD

ImD

� �
ð25Þ

written here as a column vector of length 2Nest.
The log likelihood function for a real multivariate

Gaussian probability distribution is

lnLðxjqÞ ¼ �Nest ln 2�� 1
2 lnðdetCÞ � 1

2 d
tC�1d ; ð26Þ

where d t is the transpose of d and

C ¼
ReDReDth i ReDImDth i
ImDReDth i ImDImDth i

� �
ð27Þ

is a block matrix of the real and imaginary covariances. The
vector q represents the parameters of the model or theory
against which the data are being measured (see below).
These parameters are contained inC .

In terms of D and D�, we can write

ReD ¼ 1

2
Dþ D�
� �

; ImD ¼ 1

2i
D� D�
� �

ð28Þ

and therefore

ReDReDth i ¼ 1
2Re DDy� �

þ DDth i
� �

;

ImDImDth i ¼ 1
2Re DDy� �

� DDth i
� �

;

ReDImDth i ¼ �1
2 Im DDy� �

� DDth i
� �

;

ImDReDth i ¼ 1
2 Im DDy� �

þ DDth i
� �

; ð29Þ

where Dy ¼ ðD�Þt is the Hermitian transpose of D (a row
vector containing the complex conjugate of a column vec-
tor) and DDy is the tensor or outer product of D and Dy,
which is a matrix with elements DiD

�
j .

It is important to include the covariances of DDt, as well
as those for DDy. Normally, only one of a given visibility Vk

or its conjugate V�
k will correlate with Vk0 . However, for

short baselines b <
ffiffiffi
2

p
D (less than 127.3 cm for the 90 cm

CBI dishes), there may be overlap between the support for a
given visibility and both another visibility and its conjugate,
as shown in Figure 1, and thus both may be nonzero. Note
that the correlation between distant conjugate pairs is small,
since the overlap occurs far out in the antenna response ~AA,
although it is nonnegligible on the shortest CBI baselines
where the overlap occurs at the 0.57D point (illustrated in
Fig. 1) for perpendicular 1 m baselines with the beam
response �30%. Outside the baseline range b >

ffiffiffi
2

p
D one of

hV�
k Vk0 i or hVkVk0 iwill be zero.
The covariance matrix C can be split into a sum of inde-

pendent contributions from instrumental noise CN , the
CMB signal CS, and foreground signals C src and C res. We
further split CS into a sum of terms CS

B from separate l
bands of the power spectrum,

C ¼ CN þ
X
B

qBC
S
B þ qsrcC

src þ qresC
res : ð30Þ

The factors fqB;B ¼ 1; . . . ;NBg are the ‘‘ band powers ’’
(Bond et al. 1998) for bins with centers at l ¼ lB and are the

model parameters to be determined by maximizing the like-
lihood. The factor qres is the amplitude of the covariance
due to a residual Gaussian foreground, and qsrc is the ampli-
tude of the covariance contributed by known point sources;
there may be more than one of each of these types of fore-
ground covariance matrices. The qsrc and qres can be treated
as adjustable parameters to be determined by maximum
likelihood, or they can be held fixed at a priori values, in
which case C src and C res are constraint matrices with their
corresponding terms in equation (30) behaving like
additional noise terms.

In the following sections we consider each of the terms
CN ,CS

B,C
src, andC res in turn. If we write

M ¼ DDy� �
; �MM ¼ DDth i ; ð31Þ

then in each case we calculate the contributions to the
covariance matrix for the real and imaginary parts of the
estimators using equations (27) and (29):

C ¼
1
2Re M þ �MM

� �
�1

2 Im M � �MM
� �

1
2 Im M þ �MM

� �
1
2Re M � �MM

� �
" #

; ð32Þ

with the individual covariance matrices given by insertion
of the appropriate contribution to M and �MM for that com-
ponent, e.g., MS

B and �MMS
B to compute the block elements of

CS
B.

6.1. The Noise CovarianceMatrix

The instrumental noise correlations are assumed to be
Gaussian and independent between different baselines and
frequency channels. For the CBI, tests have been carried
out on the data that show this to be true to a high level of
accuracy. In this case, the noise contributions to the real
and imaginary parts of the visibilities are independent

V Vi j< > i*< >V  Vj

iA (u +v)i iA (u −v)i

jA (u −v)j

u

v

Support for 
Support for 

100cm

90cm

Fig. 1.—Graphical representation of the regions of support in the aper-
ture plane for the correlation between visibilities on short baselines
B <

ffiffiffi
2

p
D. Note that both Vi and its conjugate V�

i ¼ Vð�uiÞ have overlap-
ping support for visibility Vj, and this must be taken into account in
computing the covariancematrix element.
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zero-mean normal deviates with

ReekReek0h i ¼ ImekImek0h i ¼ �2k �kk0 ; ReekImek0h i ¼ 0 ;

ð33Þ

and thus we can write

eey
� �

¼ E; eeth i ¼ 0 ð34Þ

for real noise matrix E, where Ekk0 ¼ 2�2k �kk0 .
It can be shown that the noise contributions n to the esti-

mators defined in equation (23) have the contributions to
the covariance elements M and �MM defined in equation (31)
given by

MN ¼ nny
� �

¼ QEQy þ �QQE �QQy ;

�MMN ¼ nnth i ¼ QE �QQt þ �QQEQt ; ð35Þ

using the covariances of e given in equation (34). This is
assembled into the covariance matrix CN using equation
(32). In general, the gridding kernel Q will map a given visi-
bility to more than one estimator, and thus CN will have
nonzero off-diagonal elements. Furthermore, if there are
noise correlations between baselines or channels, then the
structure ofCN will be even more complicated.

6.2. The CMB Signal CovarianceMatrix

The CMB contribution to the visibility covariance matrix
is given by the covariance of theR~TT term in equation (23),

MS ¼ R ~TT ~TTy� �
Ry; �MMS ¼ R ~TT ~TT t

� �
Rt ; ð36Þ

where h~TT ~TTyi and h~TT ~TT ti are given in equations (3) and
(4), respectively. Then, the elements of MS and �MMS for
estimators i and j are

MS
ij ¼

Z
d2vCð vj jÞRiðvÞR�j ðvÞ ¼ 2�

Z
d$$Cð$ÞWijð$Þ ;

�MMS
ij ¼

Z
d2vCð vj jÞRiðvÞRjð�vÞ ¼ 2�

Z
d$$Cð$Þ �WWijð$Þ ;

ð37Þ

with

Wijð$Þ ¼ 1

2�

Z 2�

0

d�Rið$; �ÞR�j ð$; �Þ ;

Wijð$Þ ¼ 1

2�

Z 2�

0

d�Rið$; �ÞRjð$; �� �Þ ; ð38Þ

where to aid in breaking up the CMB covariance matrices
into bands we write the integrations in terms of polar Four-
ier coordinates ðu; vÞ ! ð$; �Þ ($ ¼ vj j).

As an illustration, consider the case without gridding.
Then, R ¼ P, and using equation (12) in equation (37), we
get

MS
kk0 ¼ fkfk0

Z
d2vCð vj jÞ~AAkðuk � vÞ~AA�k0 uk0 � vð Þe2�iv x ðxk�xk0 Þ ;

�MMS
kk0 ¼ fkfk0

Z
d2vCð vj jÞ~AAkðuk � vÞ~AAk0 uk0 þ vð Þe2�iv x ðxk�xk0 Þ

ð39Þ

for the covariance matrix element between visibilities Vk

andVk0 .

We furthermore write the radial integral over $ ¼ l=2�
as a sumwith respect toCl of equation (5):

MS
ij ¼

X
l

Wlij

l
ClWlij ¼ Wij

l

2�

� �
;

�MMS
ij ¼

X
l

�WWlij

l
Cl

�WWlij ¼ �WWij
l

2�

� �
; ð40Þ

whereWlij is the variance window function (e.g., Knox 1999).
We define the band powers fqB;B ¼ 1; . . . ;NBg by con-

structingCl piecewise with respect to a fiducial shapeC
shape
l ,

Cl ¼
X
B

qBC
shape
l 	Bl ; ð41Þ

where

	Bl ¼
1 l 2 B

0 l 62 B

	
ð42Þ

breaks the power spectrum into non-overlapping bands. The
standard choice for the shape is Cshape

l ¼ 1 for equal power
per log l interval, with qB then giving the band powers in units
of T2. Then, to calculate CS

B, we construct band versions of
the covariancematrix elements in equation (36),

MS
B ¼

X
l

W l

l
C

shape
l 	Bl ; �MMS

B ¼
X
l

�WW l

l
C

shape
l 	Bl ; ð43Þ

where MS ¼
P

B qBM
S
B and �MMS ¼

P
B qB

�MMS
B. These are

then combined following the prescription in equation (32)
to assemble theCS

B.
The variance window function WijðvÞ is the convolution

of the ~AAiðvÞ and ~AAjðvÞ, and thus its width is characteristic of
the square of the Fourier transform primary beam, or
FWHM Dl � al=

ffiffiffi
2

p
. Thus, we would expect in a single field

to be able to achieve a limiting resolution of Dl � 300 for
al ¼ 422 at 31 GHz. This will be increased by the mosaick-
ing by a factor roughly equal to the extent of the half-power
width of the mosaic relative to that of a single field. In prac-
tice, the limiting useful width for the l bins for the band
powers will be set by the band-band correlations introduced
in the maximum likelihood estimation procedure (see xx 7
and 9.1 for further discussion and examples).

6.3. Known Point-Source ConstraintMatrices

Consider a set ofNc point sources at positions xc with flux
densities Sc(�) (c ¼ 1; . . . ;Nc). The intensity field at fre-
quency � is then given by

I�ðxÞ ¼
X
c

Scð�Þ�2ðx� xcÞ ; ð44Þ

which is assumed to be uncorrelated with other intensity
components like the CMB. The effect V src

k on the visibilities
Vk (e.g., eq. [11]) is then given by the sum over sources

V src
k ¼

X
c

Vck; Vck ¼ Scð�kÞAkðxc � xkÞe�2�iuk x ðxc�xkÞ ;

ð45Þ

where Vck is the contribution to visibility k of source c. We
assume that the positions of the sources can be determined
with negligible uncertainty through radio surveys and that
the errors are due to uncertainties in the measurements of
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the flux densities. Then, the covariance between the source
contributions to visibilities k and k0 is

V src
k V src�

k0
� �

¼
X
c

X
c0

Scð�kÞSc0 �k0ð Þh iAkðxc � xkÞA�k0

� xc0 � xk0ð Þe�2�iuk 	ðxc�xkÞe2�iuk0 x ðxc0 �xk0 Þ ; ð46Þ

where hScð�kÞSc0 ð�k0 Þi is the flux density covariance matrix
between sources c and c0 at frequencies �k and �k0 , respec-
tively. There is a similar covariance matrix hV src

k V src
k0 i.

These can be passed through the gridding procedure using
equation (21) to make

Dsrc ¼ QV src þ �QQV src� ð47Þ

and used to construct the covariance elements

M src ¼ DsrcDsrc;y� �
; �MM src ¼ DsrcDsrc;th i ð48Þ

using equation (31).
This covariance matrix can be greatly simplified if we can

subtract off the mean source flux densities, leaving a zero-
mean residual error. Let the true source flux density Sc(�) be
the sum of the measured flux density Sobs

c ð�Þ and an error
�Sc(�). If our measurements of these foreground sources are
accurate, then the residuals �Sc(�) should be uncorrelated
between sources (they are due to measurement errors)
and have zero mean. In this case, we can make corrected
visibilitiesV cor

k ,

V cor
k ¼Vk �

X
c

Vobs
ck ¼

X
c

Sobs
c ð�kÞ

� Akðxc � xkÞe�2�iuk x ðxc�xkÞ ; ð49Þ

to be used in place ofV in subsequent analysis. Then, we are
left with the fluctuating component

�V src
k ¼ V src

k �
X
c

Vobs
ck ;

�Vck ¼ �Scð�kÞAkðxc � xkÞe�2�iuk x ðxc�xkÞ ; ð50Þ

which we must deal with statistically. The covariance
between the source error contributions to the visibilities,
assuming that the flux density errors are independent
between sources (but not between frequency channels for
the same source), is given by

�V src
k �V src�

k0
� �

¼
X
c

�Scð�kÞ�Sc �k0ð Þh iAkðxc � xkÞA�k0

� xc � xk0ð Þe�2�iuk x ðxc�xkÞe2�iuk0 x ðxc�xk0 Þ

ð51Þ

and similarly for h�V src
k �V src

k0 i. Finally, if the covariance is
separable, e.g.,

�Scð�Þ�Sc �0ð Þh i ¼ �Scð�Þ�Sc �0ð Þ ; ð52Þ

then we can write

�V src
k �V src�

k0
� �

¼
X
c

�src
ck �

src�
ck0 ;

�src
ck ¼ �Scð�kÞAkðxc � xkÞe�2�iuk x ðxc�xkÞ : ð53Þ

The other covariance h�V src
k �V src

k0 i can be computed in the
same way. Because we have assumed that the covariance is
separable, we can speed up the covariance calculation as

only the vector rsrc
c for each source is needed. We can grid

this onto the estimators

Dsrc
c ¼ Qrsrc

c þ �QQrsrc�
c ð54Þ

and then

Msrc ¼
X
c

Dsrc
c D

src;y
c ; �MM src ¼

X
c

Dsrc
c Dsrc;t

c ; ð55Þ

which are used to buildC src.
There are two components to the source flux density

uncertainties �Sc(�k), one from the uncertainties on the
source frequency spectrum, and the other from the uncer-
tainties on the flux density measurements and any extrapo-
lation of the measured flux densities to the observing
frequencies �k (using the estimated source spectrum). As an
example, consider a source with a flux density Sc(�0) mea-
sured with standard deviation �S0 at frequency �0 and a
known power-law frequency spectrum with spectral index
�,

Scð�kÞ ¼ Scð�0Þf
�k
�0

; �

� �
; f

�k
�0

; �

� �
¼ �k

�0

� ��

: ð56Þ

Then, it is easy to show that

�Scð�kÞ
Scð�kÞ

¼ �S0

Scð�0Þ
; ð57Þ

with the fractional uncertainty in the flux density �Sc/Sc

remaining independent of the frequency.
On the other hand, consider the case in which there is

now an uncertainty �� in the spectral index between �k and
�0. Then, our extrapolation factor f ð�=�0; �Þ, which we
write as

f
�

�0
; �

� �
¼ e� lnð�=�0Þ ; ð58Þ

propagates to the extrapolated flux density as

�Scð�kÞ
Scð�kÞ

¼ ln
�

�0

� �
�� ; ð59Þ

which can be negative: for two channels flanking the fiducial
frequency (e.g., � < �0 < �0) the errors will be anticorre-
lated. Note that we have approximated the resulting distri-
bution as Gaussian. In general it is not, e.g., for a Gaussian
distribution in �we find a lognormal distribution in S(�).

Although the dominant spectral error is due to the extrap-
olation from a frequency �0 outside the range of the CMB
instrument, there is an additional error due to an error in
the spectral index over the frequency channels �k of the visi-
bilities. This is as if you extrapolated using one spectrum
appropriate for the band center ��� of the instrument, but
when the flux densities Sobs

c ð�kÞ are extrapolated from band
center Sobs

c ð���Þ, there is an error from using the wrong � over
the band. This is handled using equation (59) with another
�� appropriate to the uncertainty in the spectral index over
the �k.

For the CBI analysis, we have approximated both the flux
density error and the spectral extrapolation error as a single
equivalent flux density error. For the CBI, the frequency
span (26–36 GHz, or d�=� ¼ 
16%) is small enough that
we can approximate the spectral index uncertainty as an
effective flux density uncertainty �c extrapolated to band
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center ��� from �0 using �0,

�Scð�kÞ � f
�

���
; �


 �
�c;

�2
c ¼ f 2

���

�0
; �0

� �
�2
S0 þ S2

0 ln
���

�0

� �� 
2
�2
�

( )
; ð60Þ

where � need not equal �0 and should reflect the spectral
index over the observing band, not the one used for
extrapolation from �0.

In principle, if the true mean flux densities for the sources
are correctly subtracted from the visibilities and the cova-
riance matrix C src is built using the correct elements
h�Scð�kÞ�Sc0 ð�k0 Þi, then inclusion of this as a noise term in C
using qsrc ¼ 1 would remove the effects of these sources from
our power spectrum estimation in a statistical sense. How-
ever, there are a number of factors that make this difficult. If
the source flux density measurements have a calibration
error, then the errors will not be independent between sour-
ces. In addition, the fainter sources (which are still signifi-
cant contributors to the signal) have flux densities that are
often extrapolated from much lower frequencies (e.g., the
‘‘NVSS ’’ sources in Papers II and III). Furthermore, since
there are a relatively small number of discrete sources con-
tributing to a given field, it is not clear that we are in the stat-
istical limit where the flux density covariance is an accurate
description of what is happening to the data. For these rea-
sons, for the CBI analysis we treat the covariance matrix
C src constructed using the approximation in equation (60)
as a constraint matrix for the nuisance parameters due to
the sources and set qsrc to a high enough amplitude to project
out the contaminated modes in the data. Because the source
modes are spread out by the effect of the synthesized beam
(the ‘‘ point-spread function ’’ [PSF] in imaging terms), set-
ting qsrc to too high a value will start to down-weight modes
that are not significantly contaminated, while too low a
value will eat into the noise and CMB signal power in those
modes without down-weighting them sufficiently, thus bias-
ing the affected band powers low. The exact values to be
used thus depend on the signal and noise levels in the data;
we refer the reader to Papers II and III for descriptions of
what was chosen for the CBI analysis. See Bond et al. (1998)
for a description of the constraint matrix formalism and the
technique of projection.

6.4. Gaussian Foregrounds and Residual Point Sources

In x 2 it was mentioned that a single foreground compo-
nent could be modeled with a modified covariance matrix,
power spectrum shape, and frequency dependence. As long
as these foregrounds can be treated as a Gaussian random
field, they can be processed in the same manner as the CMB.
Therefore, once the amplitude and shape of the foreground
fluctuation power spectrum CresðvÞ are input, we compute
the foreground covariance matrix elements

M res ¼
X
l

W res
l

l
Cres

l ; �MMres ¼
X
l

�WW res
l

l
Cres

l ; ð61Þ

where the variance window functions W res and �WW res are
given by substituting for R in equation (38) a new Rres built
from a kernel

Pres
k ðvÞ ¼ f resk

~AAkðuk � vÞe2�iv x xk ð62Þ

using a frequency factor f resk ¼ f resð�kÞ appropriate to the
foreground in question. The matrix C res is then obtained by
substitution of Mres and �MMres as usual using equation (32).
Although it is possible to break up the Gaussian foreground
component into bands as we did the CMB, it is preferable to
compute the foreground covariance matrix in a single band
using its shape Cres

l , to reduce the degeneracy with the
CMB; you cannot distinguish between the two in narrow l
bands where the shapes are unimportant.

An example of a foreground that strongly affects the CBI
data is that from point sources below the limit for subtrac-
tion contaminating the CBI fields. This residual statistical
background, in the limit where there are many sources per
field, can be modeled as a white-noise Gaussian field with
constant angular power spectrum and power-law frequency
spectrum. Each individual source has a flux density drawn
from a differential number count distribution dN(S�)/dS,
which represents the number of sources per steradian with
flux densities between S� and S� þ dS at observing fre-
quency �. The angular clustering in these sources is very
small and can be neglected.

The contribution of a source c to visibility Vk was given
by Vck in equation (45). The sources are independently dis-
tributed in flux density and on the sky, so

VkV
�
k0

� �
¼
�X

c

Scð�kÞSc �k0ð ÞAkðxc � xkÞ

� A�k0 ðxc � xk0 Þe2�iuk x ðxc�xkÞe�2�iuk0 x ðxc�xk0 Þ
�

¼ 1

�

X
c

Scð�kÞSc �k0ð Þ
* +

Bkk0

¼ Cres �k; �k0ð ÞBkk0 ; ð63Þ

where the angular average can be written as an integral over

Bkk0 ¼
Z

d2xAkðx� xkÞA�k0 x� xk0ð Þe2�iuk x ðx�xkÞ

� e�2�iuk0 x ðx�xk0 Þ ; ð64Þ

with � as the normalizing solid angle. This integral is just a
Fourier transform, and so

Bkk0 ¼
Z

d2v ~AAkðuk � vÞ~AA�k0 uk0 � vð Þe2�iv x ðxk�xk0 Þ ; ð65Þ

which is the same as the CMB visibility covariance matrix
Mkk0 in equation (39) with fk ¼ fk0 ¼ 1 and CðvÞ ¼ 1. Simi-
larly, the other covariance hVkVk0 i reduces to �MMkk0 . Thus, in
the stochastic limit the residual source background behaves
as a Gaussian random field and can thus be treated as we do
the CMB signal in x 6.2 but with a power spectrum shape
Cl ¼ Cresð�k; �k0 Þ, which is constant over l for a given pair of
frequency channels.

The amplitude of the covariance matrix is the ensemble
average of the source power per solid angle, which is
obtained by integration over the flux density and spectral
index distributions

Cres �k; �k0ð Þ ¼
Z Smax

Smin

dS S2 dNðSÞ
dS

Z 1

�1
d� pð�jS; �0Þ

� �k�k0

�20

� ��

; ð66Þ
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where we have again assumed that the spectrum is a power
law with spectral index � over the range of interest for the �k
and integrate over the number counts over the flux density
range from Smin to Smax. We also assume that there is a large
number of these faint sources over the solid angles of inter-
est (e.g., the CBI primary beam), and thus the Poisson con-
tribution to the probability can be ignored and we can use
the mean source density given by the number counts dN/dS
at the fiducial frequency �0 for which S is given. The spectral
index distribution as a function of flux density pð�jS; �0Þ
must be estimated from radio surveys, although it can be
uncertain at the high frequencies and faint levels at which
the CMB experiments are carried out. If pð�jS; �0Þ ¼
pð�j�0Þ and thus is independent of flux density, then it can
be shown (e.g., Appendix B) that the integrals in equation
(66) can be evaluated at a single frequency � in the band and
scaled using an effective spectral index �eff,

Cres �k; �k0ð Þ ¼ Cres
� f effk f effk0 ; f effk ¼ �k

�


 ��eff

; ð67Þ

where Cres
� is the amplitude of the fluctuation power per

solid angle (in units of Jy2 sr�1) at �. In terms of the logarith-
mic average C for the CMB, Cres

� ¼ l2Cres
� =2�, which rises at

high l with respect to the CMB. See Appendix B for an
example analytic calculation using power-law source counts
and aGaussian spectral index distribution.

The frequency range of the CBI is insufficient to distin-
guish nonthermal foreground emission from the thermal
CMB, and thus this is treated as a constraint matrix (i.e., qres
is not solved for as a parameter). Therefore, in the CBI anal-
ysis we construct the covariance matrix C res using the
matrix elements in equation (61) built assuming unit power
(1 Jy2 sr�1) and the frequency dependence fk ¼ f effk from
equation (67). The value used for qres is equal to the source
fluctuation power Cres

� calculated as an a priori estimate
based on knowledge of the residual foreground source pop-
ulations (see Appendix B).

6.5. Other Signal Components

We are not restricted to CMB, Gaussian foreground, and
discrete point sources as the components of our signal or
noise in the covariance matrix C in equation (30). This
approach can be generalized to deal with other signals of
interest. For example, extended sources with a known pro-
file, such as the Sunyaev-Zeldovich effect from clusters of
galaxies, could be modeled either analytically or numeri-
cally given a power spectrum shape (e.g., Bond & Myers
1996). In the case of a signal with a known distribution on
the sky, a template can be used. Examples of this include
dust emission in the millimeter-wave bands or the anoma-
lous centimeter-wave emission observed at the Owens
Valley Radio Observatory (OVRO; Leitch et al. 1997) and
by COBE (Kogut et al. 1996). In particular, the latter
foreground, which is posited as due to spinning dust grains
by Draine & Lazarian (1999), correlates with the 100 lm
dust emission as measured by IRAS and DIRBE, and thus a
template of emission can be constructed.

6.6. Differencing

Unfortunately, with its low intrinsic fringe rates and
extremely short (<90�) spacings, the CBI is susceptible to
ground pickup. To remove this, we observe for each field a
trailing field displaced 8m in right ascension 8m later and dif-
ference the corresponding visibilities. Therefore, we must

take this differencing into account in our correlation
analysis. This effectively modifies the window function,
quenching low spatial frequencies further.

Let us write

V sw
k ¼ Vmain

k � V trail
k ; xtrailk ¼ xk þ Dxk ð68Þ

for switching offset Dxk (e.g., 8m in R:A: � 2� for the CBI
fields near the celestial equator). Then, from equation (11)
we find

V sw
k ¼ fk

Z
d2v ~AAkðuk � vÞ~TTðvÞe2�iv x xk 1� e2�iv xDxk

� �
þ eswk ;

ð69Þ

where the switched noise eswk ¼ emain
k � etrailk . In terms of the

kernel of equation (12),

V sw
k ¼

Z
d2vPsw

k ðvÞ~TTðvÞ þ eswk ;

Psw
k ðvÞ ¼ PkðvÞ 1� e2�iv xDxk

� �
; ð70Þ

and thus for our switched visibilities we compute everything
as before, but substituting Psw

k for Pk.
Note that if the trail field offsets Dx were constant in arc

length rather than in right ascension (this is approximately
true since the declination range of the mosaic is limited), we
could write the convolution kernel as

Psw
k ðvÞPsw�

k0 ðvÞ ¼ PkðvÞP�k0 ðvÞ 2� 2 cosð2�v xDxÞ½ � ; ð71Þ

where the leading factor of 2 dominates (you essentially get
twice the CMB power). Note that a noticeable effect of the
differencing is that the window function will have a ripple of
‘‘ wavelength ’’ Dx�1 superimposed on its envelope. For
example, the 8m switching in right ascension that the CBI
uses corresponds to Dx ¼ 2� at the celestial equator, and
thus the ripple has Dx�1 ¼ 28:6 in u. This corresponds to
180 in l but is azimuthally averaged in the (u, v)-plane, and
thus the peak-to-peak amplitude is reduced.

7. SOLVING THE LIKELIHOOD EQUATION

We have expressed the estimators as a real vector d and
obtained expressions for the components of its covariance
matrix, and we now turn to the problem of solving for the
maximum likelihood estimators for the band powers using
equation (26). As shown below, we will be carrying out a
large number of matrix operations using C and its compo-
nent matrices (CN , CS

B, etc.), and thus these will need facto-
rization. Because C is positive definite, we use optimized
Cholesky decomposition routines3 (DCHDC from LIN-
PACK, or DPOTRF from LAPACK) to carry out the
required factorizations.

The large number of visibilities times the number of
mosaic pointings makes this computation extremely costly
(the matrix inversions and/or solution of systems of equa-
tions are order N3 processes!), especially for a large number
of bands NB. Clever perturbative or gradient search meth-
ods can help to reduce the overhead in finding the maximum
in parameter space. One such method is the quadratic relax-
ation technique of Bond et al. (1998). To summarize here, if
one Taylor expands the log likelihood around the maximum

3 Available at http://www.netlib.org.
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likelihood band powers q̂q ¼ fq̂qB;B ¼ 1; . . . ;NBg to second
order,

lnLðq̂qþ �qÞ ¼ lnLðq̂qÞ þ
X
B

@ lnLðq̂qÞ
@qB

�qB

þ 1

2

X
B0

X
B00

@2 lnLðq̂qÞ
@qB@qB0

�qB �qB0 ; ð72Þ

then we can move toward the maximum using the quadratic
approximation

�qB ¼ �
X
B0

@2 lnLðqÞ
@qB@qB0

� 
�1
@ lnLðqÞ
@qB0

: ð73Þ

The first derivative (gradient) is given by

@ lnLðqÞ
@qB0

¼ 1

2
Tr dd t � Cð Þ C�1 @C

@qB0
C�1

� �� 

; ð74Þ

and the second derivative (curvature matrix) is given by

FBB0 ¼ � @2 lnLðqÞ
@qB@qB0

¼ Tr dd t � Cð Þ C�1 @C

@qB
C�1 @C

@qB0
C�1

��

� 1

2
C�1 @2C

@qB@qB0
C�1

�


þ 1

2
Tr C�1 @C

@qB
C�1 @C

@qB0

� �
: ð75Þ

Note that the partial derivatives of the covariance matrix
are just the band signal covariance matrices @C=@qB ¼ CS

B

defined above.
The final approximation is to replace the curvature

matrix with its expectation value, which is the Fisher
information matrix

FBB0 ¼ FBB0h i ¼ 1
2 Tr C�1CS

BC
�1CS

B0

� �
: ð76Þ

This yields

�qB ¼ 1
2

X
B0

F�1
� �

BB0Tr ðdd t � CÞ C�1CS
B0C

�1
� �� �

ð77Þ

for the iterative correction to the band powers. This
amounts to making a quadratic approximation to the shape
of the likelihood function around the maximum and itera-
tively approaching it. At each step, the total covariance
matrix C must be updated using the new band powers
qþ �q. A convergence criterion based on the magnitude of
the corrections �qB will allow approach to the true fq̂qBg to
be controlled.

The inverse of the Fisher matrix ½F�1�BB0 evaluated at
maximum likelihood is the covariance matrix of the param-
eters (Bond et al. 1998). The diagonals ½F�1�BB give an esti-
mated Gaussian error bar for the derived band powers
fq̂qBg, although the full Fisher matrix must be used to take
the (usually significant) band-band correlations into
account. As the width of the l bins for the bands B is
reduced, anticorrelation between adjacent bands increases
as a result of the intrinsic l-space resolution of the data.

The presence of known or residual point-source fore-
grounds in equation (30) is dealt with either by fixing the

amplitudes qsrc or qres and treating qsrcC
src or qresC

res as
additions to the noise matrix CN , or by solving for the qsrc
or qres and treating them as extra band powers qB with asso-
ciated entries in the Fisher matrix. In practice, for the CBI,
it is necessary to hold fixed the qres because the contribution
from the source foreground with a white-noise power spec-
trum and appropriate frequency spectrum is largely indis-
tinguishable from an overall offset of the CMB power
spectrum. In addition, the uncertainties on the individual
known source contributions to an aggregate C src will be
substantial, and thus solving for a single amplitude qsrc will
not be as useful as it might appear. In this case, the C src acts
as a constraint matrix and the qsrc can be set to an arbitrarily
high value, which will effectively project out the modes cor-
responding to the known sources by down-weighting the
relevant combinations of the estimators in the likelihood
(Bond et al. 1998; Bond &Crittenden 2001).

7.1. Combination of Independent Data Sets

Consider observations taken of separate sets of single
fields or mosaics f where there is effectively no correlation
between fields from separate f and the fields within a given
set f are related by the mosaic covariance given in the pre-
vious sections. In this case, we can assemble a giant data
vector

D ¼ d1 . . . dMð Þt ð78Þ

from the M individual field vectors d f (e.g., eq. [25]), with
the block diagonal covariance matrix

C ¼
C1

. . .

CM

0
B@

1
CA ; ð79Þ

which in turn can be written as sums of block-diagonal noise
and signal covariance matrices CN

f and CS
Bf , etc., with

blocks given by CN
f and CS

Bf , etc. Because they are block
diagonal, we can write the log likelihood in equation (26) as
the sum over data sets

lnL ¼ � lnð2�Þ
X
f

Nf � 1
2 ln detCð Þ � 1

2D
tC�1D

¼ � lnð2�Þ
X
f

Nf � 1
2

X
f

ln detC f

� �
� 1

2

X
f

dt
fC

�1
f d f :

ð80Þ

We proceed as before, with the same band powers fqBg
and with the block-diagonal band covariance matrix

CS
B ¼ @C

@qB
¼

CS
B1

. . .

CS
BM

0
B@

1
CA ; ð81Þ

and thus all matrices are block-diagonal and composed of
the individual single field or mosaic matrices. Therefore,

FBB0 ¼ 1
2

X
f

Tr C�1
f CS

BfC
�1
f CS

B0f

� �
;

�qB ¼ 1
2

X
B0

F�1
� �

BB0

X
f

Tr df d
t
f � C f

� �
C�1

f CS
B0fC

�1
f

� �� �
;

ð82Þ
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which is used to iteratively approach the fq̂qBg using the
Bond et al. (1998) scheme as in the single data set case.

7.2. The Band PowerWindow Function

To compare the band powers obtained from the data to
model power spectra, we need to define a set of filter func-
tions that project modelsCl into a set of band powersCB,

CB ¼
X
l

WB
l

l
Cl ; ð83Þ

as in Bond et al. (1998). In the ensemble limit, the expecta-
tion value hðxxt � CNÞi will approach the underlying signal
covariance matrix CS. We can then use the expression for
the minimum variance estimate of the band power to derive
the filter functionsWB

l (Knox 1999). Since

hqBi ¼ 1
2

X
B0

F�1
� �

BB0Tr C�1CS
B0C�1

� �
CS

� �
ð84Þ

and

CS �
X
B

CS
B ¼

X
l

@CS

@Cl
Cl ; ð85Þ

the normalized filter functions can be computed using the
band-averaged Fisher matrix (e.g., eq. [76])

WB
l

l
¼ 1

2

X
B0

F�1
� �

BB0Tr C�1CS
B0C�1

� � @CS

@Cl

� 

ð86Þ

with respect to the C
shape
l ¼ 1 that is built into the CS.

Because of the 	Bl used in the construction of the CS
B in

equation (43),

X
l

	B0l
WB

l

l
¼ �BB0 ; ð87Þ

and thus WB
l =l is orthonormal with respect to the bands

defined by 	Bl.
Calculating the filter functions at each l becomes some-

what prohibitive in both processor time (the problem scales
as an extra N3 þ 2lmaxN2 operations) and storage since the
calculation of equation (86) can only proceed once we have
relaxed to the maximum likelihood solution. For this rea-
son, in practice we sample the full filter functions in bands
at intervals Bf where the Bf are narrower than the bands B,
with

WB
Bf

lBf

¼ 1

2

X
B0

F�1
� �

BB0Tr C�1CS
B0C�1

� �
CS

Bf

� �
: ð88Þ

In principle, this is equivalent to assuming a flat window
over the ‘‘ fine ’’ band Bf, and as long as the curvature of the
exact window function is small over the intervals Bf, this
should provide an adequate sampling of the continuous
limit.

To obtain model band powers, we can then either interpo-
late the samplesWB

Bf
to obtain an approximate form forWB

l
for use in equation (83) or preaverage the model spectrum
over the fine bands Bf as

CB ¼
X
Bf

WB
Bf

lBf

 !
C

ðflatÞ
Bf

; ð89Þ

where C
ðflatÞ
Bf

are band powers calculated using flat filters
(W

Bf

l ¼ 1). We find that a fine band width DlBf
� 20 is suffi-

cient to adequately sample the window functions and ensure
normality and orthogonality to within 0.5% with respect to
integration over the bands (e.g., eq. [87]). Example window
functions calculated in this manner for mock deep fields and
mosaics are shown in the bottom panels of Figures 2 and 3,
respectively.

7.3. Component Band Powers

A further complication at the parameter end of the proc-
ess is that the likelihood of the band powers cannot be
assumed to be a Gaussian. This is especially so in cases in
which the error in the band powers is sample or cosmic var-
iance limited. Assuming the band powers to be Gaussian
distributed can lead to the well-known problem of cosmic
bias where the likelihood of low-power models can be over-
estimated and conversely that of high-power models can be
underestimated. Bond et al. (2000) have shown how one can
avoid this problem while still retaining Gaussianity in the 	2

analysis by treating certain functions of the band powers as
Gaussian distributed. Very good fits to the non-Gaussian
distribution of the band powers can be obtained by use of
the offset lognormal and equal variance approximations to
the likelihood.

Both approximations use offsets xB in the band powers
that describe the contributions to the error in the band
powers due to components other than the CMB. For the
range of scales probed by instruments such as CBI these
components will include the foregrounds such as point sour-
ces in addition to the usual noise ‘‘ on the sky ’’ offset
xNB �

P
l 	Blxl , where xl is the offset due to the noise contri-

bution to the error such that the quantity Zl ¼ lnðCl þ xlÞ
has a normal distribution (Bond et al. 2000). For accurate
parameter fits we therefore require estimates of band
powers for all the components making up the total cova-
riance C . An approximation for these can be obtained by
modifying the minimum variance estimator for the band
powers qB at the maximum likelihood

qXB ¼ 1
2

X
B0

FBB0½ ��1Tr C�1CS
B0C�1

� �
CX

� �
; ð90Þ

where we have substituted CX in equation (77) for the
observed measure for the signal covariance ðddt � CNÞ. We
then set CX to the noise CN , foreground source qsrcC

src, or
Gaussian residual foreground qresC

res covariance compo-
nents as desired (or use the maximum likelihood values q̂qsrc
and q̂qres if these are included as parameters in the solution
rather than being fixed). Examples of these are shown in
Papers II and III for the deep field data and mosaic data,
respectively. The offset to the lognormal is then obtained by
summing the qXB over the components, xB � qNB þ qsrcB þ qresB
(e.g., Bond & Crittenden 2001). This formalism is used in
Paper V to approximate the shapes of the likelihood
functions in order to derive limits on the cosmological
parameters.

8. IMAGING FROM THE GRIDDED ESTIMATORS

Although not the primary goal of this method, an image
can be constructed by Fourier transforming back to the sky
plane using equation (1). If the estimators Di are constructed
on a regular lattice in ui with spacing du and (u, v) extent
Ldu, then the resulting image will have an extent on the sky
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given by the inverse of the spacing d�1
u and a resolution

given by d�1
u =L. In the continuum limit (see Appendix A),

we can define an estimator T̂TðxÞ for the temperature field
TðxÞ,

T̂TðxÞ ¼
Z

d2uDðuÞe2�iu xx ; ð91Þ

where DðuÞ is the continuous functional form (e.g., eq. [A2])
for the estimators, with Di ¼ DðuiÞ. In practice, the lattice of
estimators Di is embedded in a wider grid padded with zero
in the unsampled cells, and a fast Fourier transform is
carried out.

For our standard gridding normalization zi ¼ z
ð1Þ
i given

in equation (A21), the units of D will be flux density units
(Jy), and thus its inverse Fourier transform will produce a
map in units of Jy beam�1, where the beam area is given by
the PSF of the image. For a single field, the PSF is just the
image generated using equation (91) using estimators DPSF

i

computed by introducing unit ‘‘ visibilities ’’ into equation
(21),

DPSF
i ¼

X
k

�
Qik þ �QQik

�
: ð92Þ

The situation for the mosaics is somewhat more compli-
cated, as the mosaic offsets must be taken into account in
constructing equivalent visibilities for point sources

DPSF
i ðx̂xÞ ¼

X
k

QikV
PSF
k ðx̂xÞ þ �QQikV

�PSF
k ðx̂xÞ

� �
;

VPSF
k ðx̂xÞ ¼ Ak x̂x� xkð Þe�2�iuk x ðx̂x�xkÞ ð93Þ

obtained by evaluating equation (11) with no noise and
IðxÞ ¼ �2ðx� x̂xÞ. In this case one would evaluate the PSF at
various positions x̂x in the map.

Because our estimators use the kernel Q as given in equa-
tion (22), which includes the beam transform ~AA, we are effec-
tively multiplying the image on the sky by the primary beam
squared: once in the kernel, and once due to the instrument
itself (e.g., eq. [12]). Images made directly from the D will
therefore be strongly attenuated in the (noisy) outskirts.

As mentioned in Appendix A, the optimal weighting for
the imaging of the CMB component is to use the Planck fac-
tor in equation (6) to correct for the thermal frequency spec-
trum (e.g., eq. [A20]), while our standard intensity
weighting given in equation (A19) is optimized for a flat
nonthermal power-law spectrumwith spectral index � ¼ 0.

Fig. 2.—Results of the gridded method plus quadratic relaxation for 387 mock CBI 08h deep field data sets (top), with each mock observation drawn from
an independent realization of the sky given the model power spectrum (dashed curve) and the instrumental noise with the appropriate rms. The points (black
circles) are placed at the band centers, at the mean of the reconstructed band powers with the red error bars given by the scatter among the realizations. The
blue error bars to the right of the points show the average of the inverse Fisher matrix diagonals. The histograms show the width of each band and the level
expected by integrating the model Cl over the window functions WB

l , which are shown in the bottom panel. The mean of the realizations converges to the
expected value within the Poisson uncertainty, taking into account the correlations between adjacent bands.
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We can also filter the gridded estimators in such a way as
to enhance or down-weight certain signals or noise. We
can do this with optimal or Wiener filtering (e.g., Bond &
Crittenden 2001),

D
 ¼ �D ; ð94Þ

where the choice of the filter� depends on the application.
For example, the covariances CX calculated from equa-

tion (32) can be used to construct optimal filters for each
component contributing to the observations. For the signal
component described by the covariances CX we can
construct a Wiener filter to be applied to the gridded (u, v)
estimators

DX ¼ CXC�1D : ð95Þ

The amplitudes for the signal models such as the band
powers qB or the source amplitudes qsrc can be set to their
maximum likelihood values or to fiducial model amplitudes.
The Wiener-filtered image is then recovered by Fourier
transforming.

Examples of images created using this method are
described in the next section and shown in Figure 6 below.
Wiener-filtered images are also used in Paper VI to explore

the possibility of detection of the Sunyaev-Zeldovich effect
in the data at high l.

9. IMPLEMENTING THE METHOD

The algorithm described above was coded as a scalar
FORTRAN (f77 compatible) program designated CBI-
GRIDR, with a parallelized FORTRAN 90 version using
OpenMP4 directives also available for use on multiproces-
sor machines. In addition, the Bond et al. (1998) likelihood
relaxation was coded in a second parallelized FORTRAN
90 program called MLIKELY using parallel versions of
LAPACK matrix algebra routines (e.g., x 7). Together,
these two programs make up the CBI analysis pipeline. This
pipeline has undergone numerous tests and development
since its inception in 2001 April and has been used to pro-
duce the power spectra and to provide the band powers as
input to the cosmological parameter analysis given in the
companion papers. We now give a brief description of our
implementation.

Fig. 3.—Top:Results of the gridded method plus quadratic relaxation for 117 mock CBI (7� 6 field) mosaic data sets with a CDM-based power spectrum
(dashed curve). As in Fig. 2, the points (black circles) are centered in each bin in l with red error bars giving rms scatter of about the mean for the band powers
from the processed realizations, with the blue error bar from average inverse Fisher diagonals to the right of the points. The window functions are plotted in
the bottom panel.

4 Available at http://www.openmp.org.

No. 2, 2003 ESTIMATION OF POWER SPECTRUM OF CMB 587



In order to carry out the numerical integrations, a fine-
grain rectangular lattice in (u, v)-space was used. The fine-
grain grid size Dufine (in units of wavelength) was chosen to
adequately sample the phase turns in the (u, v)-plane as a
result of the mosaic size and differencing; for a standard
7� 6 CBI mosaic with 200 spacing, the maximum field sepa-
ration along the grid direction is xmax ¼ 2�, which gives
oscillations in the (u, v)-plane with wavelength of
x�1
max ¼ 28:65, giving Dufine � 14:3 for two samples per cycle.

To evaluate the projection operatorsRiðvÞ (e.g., eq. [23]), we
store a small fine-grain lattice around each ui. The maxi-
mum radius in (u, v)-space needed for the support of R is
ru ¼ 2D=�min. For CBI D ¼ 90 cm, and �min ¼ 0:844 cm
at 35.5 GHz, we get ru ¼ 213:1. A grid of size 53� 53 cells
with Dufine ¼ 8:526 will fit both the sampling and radius
requirements.

The estimators are evaluated on a coarse-grain lattice of
ui, with a spacing ofDucoarse. The fine-grain lattices on which
we accumulate the RiðvÞ will be cross-correlated to form the
covariance elements MB and �MMB (e.g., eq. [37]); it is desir-
able to have the coarse-grid size locked to integer multiples
of the fine-grid cells. This coarse grid does not have to sam-
ple the highest mosaic frequencies, but only the effective
width of R. Tests were carried out using the mock data (see
below) using different fine-grain cell sizes and coarse-grain
spacings, looking for changes in the derived band powers as
these were varied. We find that for single CBI fields,
Ducoarse ¼ 3Dufine is adequate. For CBI mosaics, a hybrid
lattice with Ducoarse ¼ Dufine in the inner part (l < 800) and
Ducoarse ¼ 2Dufine in the outer part was found to work well.

As stated in x 2, the choice of sign of the exponential of
the Fourier transform in equation (1) is a convention. This
choice varies throughout the literature on the subject, but in
practice it depends on the way the baseline vectors are
defined in the data and how the correlation products are
made (e.g., which antenna gets the quadrature phase shift).
We note that in coding our algorithm to conform to the
imaging standards of the AIPS5 and DIFMAP6 (Shepherd
1997) packages using the CBI data, we had to use the oppo-
site sign convention from the one presented in equation (1).

To process a data set, a spectral weighting f(�) and shape
function Cshape

l are chosen. The visibilities Vk are looped
over, and any source subtraction (x 6.3) is applied. For each
estimator i that Vk contributes to either directly or as a con-
jugate, its contribution to the fine-grain lattice q forRiðvqÞ is
accumulated, e.g.,

RiðvqÞ ¼
X
k

QikPkðvqÞ þ �QQik
�PPkðvqÞ

� �
; vq ¼ ui þ Dufinev̂vq ;

ð96Þ

where v̂vq is a 53� 53 unit (fine-grain) lattice. This means
that for nest estimators, the storage required for R is only
2809nest double-precision complex numbers. If the data
were differenced (as for CBI data), then Psw

k ðvÞ from equa-
tion (70) is used. The contributions to the noise covariance
elements MN and �MMN (eq. [35]) and the Dsrc

c (eq. [54]) are
also accumulated at this time. Finally, this visibility’s contri-
butions are added to estimator Di and normalization zi.

The storage for R, MN , and �MMN dominates the memory
requirements. For example, the CBI mosaics use around
nest ¼ 2500 estimators, and thus storage for 53� 53�
2500 � 7� 106 double-precision complex numbers is
needed. A single packed n2est � 6� 106 array is needed to
hold MN and �MMN . The CX matrices are calculated in place
and written out row by row, and thus they need not be
stored. There are no instances where matrices of dimension
N2

vis are stored; the storage for a matrix of this size would be
prohibitive as our largest CBI mosaics haveNvis > 2� 105.

When all the visibilities have been processed, the esti-
mators are normalized by zi, split into real and imaginary
parts, and written out to disk. The covariance matrices
CN

ij , C
S
Bij, and any Csrc

ij are constructed by looping over
pairs of rows corresponding to the real and imaginary
parts of each estimator, e.g., rows i and i þNest for esti-
mator i. For each j � i, the stored Ri and Rj are cross-
correlated along with the shape function Cð vj jÞ to form
the band power covariance elements MBij and �MMBij of
equation (37), combined to make CS

Bij using equation
(32), and stored. The relevant columns of these rows of
CN

ij are formed from the stored MN
ij and �MMN

ij . At this
point, for each C src desired (there may be more than one;
in the CBI analysis we use three), the relevant Dsrc

c are
combined using equation (55) to form Msrc

ij and �MMN
ij ,

which in turn are used to make Csrc
ij . After all columns

for these rows of the covariance matrices are computed,
they are written to disk, and this process is repeated for
the pair of rows corresponding to the next estimator i.
When all rows are complete, the output file is complete.
Note that different binnings of the CS

B can be run without
regridding using the original R, saving significant time.

If a residual foreground covariance matrix C res is desired,
the procedure outlined above is repeated in its entirety using
the description in x 6.4. The spectrum and shape appropri-
ate for the source population or foreground emission are
used during the gridding and covariance matrix construc-
tion. Other than these factors, the same gridding as in the
CMB and noise estimators must be used.

The output files from CBIGRIDR are then used as input
to MLIKELY. These can be for single fields or mosaics, or
for combinations of independent fields or mosaics (x 7.1).
At this point, the prefactors qsrc and qres for any C src and
C res covariance matrices are chosen and fixed. Relaxation
to the likelihood maximum is carried out as described in x 7,
and the resulting band powers fqBg and inverse Fisher
matrix elements ½F�1�BB0 are written out. If desired, the band
power window functions WB

Bf
(x 7.2) can be computed if

CBIGRIDR was run to produce narrow-bin CS
Bf
. The com-

ponent band powers qNB , q
src
B , and qresB (x 7.3) can also be

computed at this time.
Finally, filtered images using the formalism of x 8 can be

computed from the estimators, the C (at maximum likeli-
hood), and the component covariance matrices. Results
from this are shown below and in Paper VI.

The timing for CBIGRIDR depends on the degree of par-
allelization, processor speed on a given machine, number of
visibilities gridded, number of foreground sources, and
number of bins B for the band powers. As an example, the
processing of the 14h mosaic field of Paper III (the largest of
the data sets) involved gridding 228,819 visibilities from 65
separate nights of data in 41 fields to 2352 complex estima-
tors. A total of 916 sources were gridded into three source
covariance matrices. A total of seven different binnings for

5 See http://www.cv.nrao.edu/aips.
6 See ftp://ftp.astro.caltech.edu/pub/difmap.
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CS
B were run at this time from the same gridding. The execu-

tion time using the parallel version of CBIGRIDR was
2h40m running on 22 processors on a 32 processor Alpha
GS320 workstation at the Canadian Institute for Theoreti-
cal Astrophysics (CITA). It then took 3h22m on the same
computer for MLIKELY to process 4704 double-precision
real estimators in 16CS

B bands, with threeC src matrices, one
C res, and oneCN . This included the time needed to calculate
the component band powers CX

B , but not the window func-
tions. The speed of this fast gridded method has allowed us
to carry out numerous tests on both real and simulated data
sets, which would not have been possible carrying out maxi-
mum likelihood (e.g., using even the optimized MLIKELY)
on the 200,000 plus visibilities.

9.1. Method Performance Tests UsingMock CBI Data

The performance of the method was assessed by applying
it to mock CBI data sets. Simulated CBI data sets were
obtained by replacing the actual visibilities from the data
files containing real CBI observations of the various fields
used in Papers II and III with the response expected for a
realization of the CMB sky drawn from a representative
power spectrum, plus uncorrelated Gaussian instrumental
noise with the same variance as given by the scatter in the
actual CBI visibilities. The differencing of the lead and trail
fields used in CBI observations was included (e.g., x 6.6).
This mock data set had the same (u, v) distribution as the
real data and gives an accurate demonstration of expected
sensitivity levels and the effect of cosmic variance. The
power spectrum chosen for these simulations was for a
model that fitted the COBE and BOOMERANG data
(Netterfield et al. 2002).

Figure 2 shows the power spectrum estimation derived
following the procedure detailed above. The mock data sets
were drawn as realizations for the 08h CBI deep field from
Paper II. The binning of the signal covariance matrix CS

B

was chosen to be uniform in l with bin width Dl ¼ 500.
Because a single realization of the sky drawn from themodel
power spectrumwill have individual mode powers that devi-
ate from the mean given by the power spectrum as a result
of this intrinsic so-called cosmic variance plus the effect of
the thermal instrumental noise, we analyze 387 realizations,
each taken from a different realization of the sky and a dif-
ferent set of instrumental noise deviates. The mean qB for
each band B converge to hCBi, which is obtained by inte-
grating the model Cl over the window functions WB

l (e.g.,
eq. [89]), within the sample uncertainty for the realizations.
Furthermore, the standard deviation of the qB from the
mean for each band agrees with the value obtained from the
diagonals of the inverse of the Fisher matrix.

The choice of the l bin size is driven by the trade-off
between the desired narrow bands for localizing features in
the power spectrum and the correlations between bins intro-
duced by the transform of the primary beam. There is an
anticorrelation between adjacent bands seen in ½F�1�BB0 at
the level of �13% to �23% for Dl ¼ 500 with a single field.
We have found that correlations up to about �25% give
plots of the qB that are more visually appealing than those
made with narrower band and higher correlation levels as a
result of the increasing scatter in the band powers about the
mean values. Bins of this size do not achieve the best possi-
ble l resolution, and thus our cosmological parameter runs

use finer binned bands since the correlations are taken into
account in the analyses.

The band window functionsWB
l are shown in the bottom

panel of Figure 2 and were computed using narrow binnings
WB

Bf
(e.g., eq. [88]) with Dl ¼ 20. The small-scale structures

seen in the window functions, particularly visible around
the peaks, are due to the differencing that introduces oscilla-
tions (see x 6.6). As shown in equation (87), a window func-
tionWB

l is normalized to sum to unity within the given band
B and to sum to zero in the other bands, and thus there must
be compensatory positive and negative ‘‘ sidelobes ’’ of the
window function outside the band.

Figure 3 shows the power spectrum derived for a simu-
lated mosaic of 7� 6 fields separated by 200 using the actual
CBI 20h mosaic fields from Paper III as a template. This
mosaic field was chosen as it had incomplete mosaic cover-
age and thus would be the most difficult test for the method.
The binning for CS

B shown used Dl ¼ 200, which gave adja-
cent band anticorrelations of �13% to �18% in the FBB0 .
Again the mean of the 117 realizations converges to the
value expected within the error bars, showing that there is
no bias introduced by the method, even in the presence of
substantial holes in the mosaic (see Paper III for the mosaic
weight map). Furthermore, the rms scatter in the realiza-
tions converges to the mean of the inverse Fisher error bars,
as in the single-field case. As in the previous figures, the
band power window functions are shown in the lower
panels.

In Figure 4 are shown three randomly chosen realizations
from the ensemble, plotted along with the input power spec-
trum. This shows the level of field-to-field variations that we
might expect to see in CBI data. There are noticeable devia-
tions from the expected band powers in individual realiza-
tions, particularly at low l where cosmic variance and the
highly correlated bins conspire to increase the scatter. These
differences are within the expected scatter when bin-bin cor-
relations and limited sample size are taken into account, but
care must be exercised in interpreting single-field power
spectra. In particular, the acoustic peak structures are
obscured by the sample variations. However, the average
band powers for the three runs (shown in Fig. 4 as open
black circles) are better representations of the underlying
power spectrum. Although this is not a proper ‘‘ joint ’’
maximum likelihood solution (e.g., x 7.1) as is done for the
real CBI mosaic fields, the improvement seen using the
three-field average leads us to expect that the combination
of even three mosaic fields damps the single-field variations
sufficiently to begin to see the oscillatory features in the
CMB power spectrum.While we do not show the equivalent
plots of the deep fields from Figure 2, the same behavior is
seen (with even larger field-to-field fluctuations in the rela-
tively unconstrained first bin, although still consistent with
the error bars).

The effect of adding point sources to the mock fields and
then attempting power spectrum extraction is shown in Fig-
ure 5. A set of 200 realizations were made in the same man-
ner as in the runs in Figure 2, but the list of point-source
positions, flux densities and uncertainties, and spectral indi-
ces from lower frequency used in the analysis in Paper II
(the ‘‘NVSS ’’ sources) was used to add mock sources to the
data. The flux densities of the sources actually added to the
data were perturbed using the stated uncertainties as 1 �
standard deviations. The errors used were 33% of the flux
density except for a few of the brighter sources that were put
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in with 100% uncertainties. We then used the methodology
described in x 6.3 to compute the constraint matrices. The
first method of correction used was to subtract the (unper-
turbed) flux densities from the visibilities and build the C src

from Dsrc built using the uncertainties (shown as the red tri-
angles). In addition, we also did no subtraction but built
C src from Dsrc using the full (unperturbed) flux densities
(shown as the blue squares). This is equivalent to assuming
a 100% error on the source flux densities and thus canceling
the average source power in those modes. In both cases the
factor qsrc ¼ 1 was used. The simulations show that both
methods are effective, with no discernible bias in the
reconstructed CMB band powers.

Finally, the production of images using the gridded esti-
mators described in x 8 is demonstrated in Figure 6. The ser-
ies of plots show the effect of Wiener filtering using the noise
and various signal components on an image derived from
one of the mock 08h CBI deep field realizations with sources
from the ensemble shown in Figure 5. The Planck factor
weighting of equation (A20) was used during gridding to
optimize for the thermal CMB spectrum, although in prac-
tice this makes little difference as a result of the restricted
frequency range of the CBI. The estimators for this realiza-
tion were computed by subtracting the mean values of the

source flux densities and putting the standard deviations
into C src with qsrc ¼ 1 (the red triangles in Fig. 5). The filter-
ing down-weights the high spatial frequency noise seen in
the unfiltered image and effectively separates the CMB and
source components as shown by comparing the bottom pan-
els of Figure 6 to the total signal in the top right-hand panel.
The signal in this realization is dominated by the residuals
from two bright point sources that had 100% uncertainties
put in for their flux densities and thus escaped subtraction.
The effectiveness of C src in picking out the sources in the
image plane underlines its utility as a constraint matrix in
the power spectrum estimation.

10. CONCLUSIONS

We have outlined a maximum likelihood approach to
determining the power spectrum of fluctuations from inter-
ferometric CMB data. This fast gridded method is able to
handle the large amounts of data produced in large mosaics
such as those observed by the CBI. Software encoding this
algorithm was written and tested using mock CBI data
drawn from a realistic power spectrum. The results of the
code were shown to converge as expected to the input power
spectrum with no discernible bias. For small data sets, this

Fig. 4.—Three randomly selected realizations from the mosaic field simulations shown in Fig. 3 plotted against the model power spectrum (solid black
curve). The three lines for the band powers reconstructed from the three realizations correspond to the band powers (central lines) and the 
1 � excursions
using the inverse Fisher error bars. The scatter in band powers between realizations is within the expected range. Also shown is the unweighted scalar average
of the band powers for the three realizations, which is an approximation to a true joint likelihood solution. The average is a better fit to the model, as is
expected.
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code was also tested against independently written software
that worked directly on the visibilities. In addition, the pipe-
line was run with gridding turned off as described in x 6,
again for small test data sets. No bias or significant loss in
sensitivity was seen in these comparisons.

This software pipeline was used to analyze the actual CBI
data, producing the power spectra presented for the deep
fields and mosaics in Papers II and III, respectively. The
output of the pipeline also was used as the input for the cos-
mological parameter analysis in Paper V and the investiga-
tion of the Sunyaev-Zeldovich effect in Paper VI.

This method is of interest for carrying out power spec-
trum estimation for interferometer experiments that pro-
duce a large number of visibilities but with a significantly
smaller number of independent samples of the Fourier plane
(such as close-packed arrays like VSA or DASI). The CBI
pipeline analysis is carried out in two parts, the gridding and
covariance matrix construction from input uv-FITS files in
CBIGRIDR and the maximum likelihood estimation of
band powers using quadratic relaxation in MLIKELY. The
software for the pipeline is available by contacting the
authors.

We close by noting that our formalism can be extended to
deal with polarization data. In the case of CMB polariza-
tion, there are as many as six different signal covariance
matrices of interest in each band, with estimators (or visibil-
ities) for parallel-hand and cross-hand polarization prod-
ucts, and thus development of a fast method such as this is
critical. In 2001 September polarization-capable versions of
CBIGRIDR and MLIKELY were written and tested. We
describe the method, the polarization pipeline, and results
in an upcoming paper (S. T. Myers et al. 2003, in
preparation).

S. T. M. was supported during the early years of the CBI
by an Alfred P. Sloan Fellowship from 1996 to 1999 while at
the University of Pennsylvania. Genesis of this method by
S. T. M. greatly benefited by a stay in 2000 July at the ITP in
Santa Barbara, supported in part by the National Science
Foundation under grant PHY 99-07949. The National
Radio Astronomy Observatory is a facility of the National
Science Foundation operated under cooperative agreement
by Associated Universities, Inc. The CBI was funded
under NSF grants AST 94-13934, AST 98-02989, and

Fig. 5.—Results usingmock deep field data sets including foreground point sources based on the actual list used in the CBI data (top) along with the window
functions (bottom). The input power spectrum and expected band powers are as in Fig. 2. The green stars show the average for 200 realizations where no source
subtraction or projection was done, with the powers divided by a factor of 2 to fit on the plot. The expected increase with l2 is seen, along with a falloff in the last
bin due to the source frequency spectrum. The points with error bars at the center of each bin (red triangles) were computed from 200 realizations processed
with subtraction of the mean flux density from the visibilities and construction of C src using the uncertainties, while the points with error bars to the right of
these (blue squares) are from 200 realizations where no source subtraction was done, but we built C src using the full (unperturbed) flux densities that projects
out the sources with only a slight increase in noise. Despite the large power from sources at high l, our method successfully removes the foreground power from
the spectrumwith no sign of bias.
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AST 00-98734, with contributions by Maxine and Ronald
Linde and Cecil and Sally Drinkward and the strong sup-
port of the California Institute of Technology, without
which this project would not have been possible. In

addition, this project has benefited greatly from the comput-
ing facilities available at CITA and from discussions with
other members of the group at CITA not represented as
authors on this paper.

APPENDIX A

FORM OF THE LINEAR ESTIMATOR

Suppose we were to construct a simple linear ‘‘ dirty ’’ mosaic on the sky obtained by a linear combination of the dirty
(not deconvolved) images of the individual fields (e.g., Cornwell et al. 1993). In the (u, v)-plane, this reduces to summing
(integrating) up the visibilities from each mosaic ‘‘ tile ’’ with some weighting function, e.g.,

Di ¼
X
k

QikVk ; ðA1Þ

where for the time being we ignore the contribution from the complex conjugates of the visibilities (see below). For illustrative
purposes, let us consider only a single frequency channel and write the estimator as a function DðuÞ, where Di ¼ DðuiÞ, which

Fig. 6.—Images reconstructed from the gridded estimators using the formalism of x 8. Data are for one of the mock 08h deep field realizations with sources
used in Fig. 5. Top left: Image computed without any filtering. Top right: Image derived by setting CX ¼ C src þ

P
B qBC

S
B the sum of the signal terms. Bottom

left: Image usingCX ¼
P

B qBC
S
B for the CMB only. Bottom right: Image forCX ¼ C src to pick out the point sources. The filter clearly dampens the noise and

separates the CMB and source components. The residuals from several bright sources dominate the signal in all but the CMB-filtered image (the brightness
scale in that image is enhanced). The white dashed circle shows the 45<2 FWHM of the CBI at 31 GHz. The attenuation of the signal brightness due to the
square of the primary beam is clearly seen.
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in the absence of instrumental noise is given by

DðuÞ ¼
Z

d2v

Z
d2xFðx; vÞQðu; x; vÞhVðx; vÞi ; ðA2Þ

with kernel Q, sky and aperture plane sampling given byF, and where

Vðx; vÞ ¼
Z

d2v0 ~II v0ð Þ~AA v� v0ð Þe2�iv0 xx ðA3Þ

is the visibility at pointing position x and (u, v) locus v from equation (11). In practice, the sampling function is just a series of
delta functions

Fðx; vÞ ¼
X
k

!k�
2ðx� xkÞ�2ðv� ukÞ ðA4Þ

over the measured visibilities k ¼ 1; . . . ;Nvis each with weight !k.
As anAnsatz, we let the mosaicking kernel have the form

Qðu; x; vÞ ¼ Qðv� uÞe�2�iu xx ; ðA5Þ

where Q is the interpolating kernel. Furthermore, let us assume that the (u, v)-plane coverage is the same for all mosaic
pointings, and thusFðx; vÞ is separable,

Fðx; vÞ � FðvÞGðxÞ ; ðA6Þ

where FðvÞ andGðxÞ are the sampling and weighting in the two domains. Combining these and rearranging terms, we get

DðuÞ ¼
Z

d2v0 ~II v0ð Þ
Z

d2vFðvÞQðv� uÞ~AA v� v0ð Þ
Z

d2xGðxÞe�2�iðu�v0Þ x x ðA7Þ

¼
Z

d2v0 ~II v0ð Þ~GG u� v0ð Þ
Z

d2vFðvÞQðv� uÞ~AA v� v0ð Þ ; ðA8Þ

where in equation (A8) we used the fact that the final right-hand side integral in equation (A7) is the Fourier transform ~GG of
the mosaic functionG.

For an infinite continuous mosaic, ~GGðv0 � uÞ ¼ �2ðv0 � uÞ and thus

DðuÞ ¼ ~IIðuÞ
Z

d2vFðvÞQðv� uÞ~AAðv� uÞ : ðA9Þ

If we wish to recover DðuÞ ¼ ~IIðuÞ in this limit, then

Qðv� uÞ ¼ 1

zðuÞ
~AA�ðv� uÞ ðA10Þ

with normalization

zðuÞ ¼
Z

d2vFðvÞ~AA2ðv� uÞ ðA11Þ

will fulfill our requirements. We have chosen ~AA�ðv� uÞ as the (u, v) kernel as it reproduces the least-squares estimate of the sky
brightness in the linear mosaic (Cornwell et al. 1993). Then, equation (A8) becomes

DðuÞ ¼ 1

zðuÞ

Z
d2v0 ~II v0ð Þ~GG u� v0ð Þ

Z
d2vFðvÞ~AA�ðv� uÞ~AA v� v0ð Þ ; ðA12Þ

which has a width controlled by the narrower of the width of ~AA2 or the width of ~GG. Thus, by widening the mosaic GðxÞ to a
larger area than the beam A, we will fill in the desired information inside the ~AA smeared patches in the (u, v)-plane. Thus, a
properly sampledM2 mosaic will fill in anM2 subgrid within each (u, v) cell you would have normally had for a single pointing,
and thus anM2 mosaic consisting ofN2 ‘‘ images ’’ each is equivalent to a (u, v) supergrid of size ðM �NÞ2 (e.g., Ekers & Rots
1979).

Note that for a noncontinuous mosaic, there will be ‘‘ aliases ’’ in the (u, v)-plane separated by the inverse of the mosaic spac-
ing in the sky (Cornwell 1988). Ideally, we would like the separation between aliased copies to be larger than the extent of the
beam transform, which is satisfied for Dx � �=2D, which forD ¼ 90 cm corresponds to 21<6 at 26.5 GHz and only 16<1 at 35.5
GHz, the centers of the extremal CBI bands. The spacing used in the CBI mosaics is a compromise between the aliasing limits
over the bands and the desire to have a fewer number of pointings on a convenient grid.We chose to observe with pointing cen-
ters separated by 200, which is suboptimal above 27.5 GHz. However, the effect of aliasing is small, with the overlap point
a�1 �D��1 occurring at the 0.61% point of ~AA at 31 GHz and the 6.5% point for the highest frequency channel at 35.5 GHz.
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We obtain the gridding kernel Qik of equation (A1) corresponding to equation (A10) by using the discrete sampling in
equation (A4),

Qik ¼ !k

zi
~AA�k ðuk � uiÞe�2�iui xxk ; ðA13Þ

with visibility weights !k and normalization factor zi. The discrete form of the normalization derived in equation (A11) is

zi ¼
X
k

!k
~AA2
kðuk � uiÞ : ðA14Þ

Then,

Di ¼
1

zi

X
k

!k
~AA�k ðuk � uiÞVke

�2�iui x xk ðA15Þ

is the weighted sum of visibilities used for the estimators. Note that because VðuÞ ¼ V�ð�uÞ, there are also visibilities Vk0 for
which �uk0 lies within the support range around ui, i.e., ~AA�k0 ð�uk0 � uiÞ

�� �� > 0. Thus, we should add in the complex conjugates
V�

k

Di ¼
1

zi

X
k

!k
~AA�k ðuk � uiÞVk þ ~AA�k ð�uk � uiÞV�

k

� �
e�2�iui x xk : ðA16Þ

To do this, we construct another kernel �QQik,

�QQik ¼
!k

zi
~AA�k ð�uk � uiÞe�2�iui x xk ; ðA17Þ

which will gather the appropriateV�
k , giving

Di ¼
X
k

�
QikVk þ �QQikV

�
k

�
ðA18Þ

for the final form of our linear estimator.
For estimated visibility variances �2k, the optimal weighting factor (in the least-squares estimation sense) is given by

!k ¼
1

�2k
ðA19Þ

but may also include factors based on position in the mosaic or frequency channel. For example, up until now we have
neglected the frequency dependence of the observed visibilities. If we are reconstructing an intensity field with a uniform flux
density spectrum, then no changes need be made. If there is a frequency dependence, such as that for a power-law foreground
(e.g., eq. [7]) or the thermal spectrum of the CMB (e.g., eq. [6]), then the visibilities should be scaled and weighted by the
appropriate factor fkwhen gridded in order to properly estimate ~II0ðukÞ or ~TT ukð Þ, respectively. For example, for the CMB using
equation (6) for the spectrum, we find

QT
ik ¼ f �1

T ð�kÞ!k

zi
~AA�k ðuk � uiÞ ;

!k ¼ f 2T ð�kÞ
�2k

: ðA20Þ

In practice for the CBI, the frequency range of the data is not great enough for the spectral weighting factor to matter, and we
therefore use the default weighting given in equation (A19). This will therefore be slightly nonoptimal in the signal-to-noise
sense (it will not be the minimum-variance estimator), but it will not introduce a bias in the band powers.

The choice of the normalization zi is somewhat arbitrary, as it only determines the units of the Di and not the correlation
properties. However, this can be important if we wish to use the estimators to make images using the formalism of x 8. For
instance, the normalization given in equation (A14) has the drawback of diverging in cells where all the ~AA2

k are vanishingly
small [such as the innermost and outermost supported parts of the (u, v)-plane] and will produce images with heightened noise
on short and long spatial wavelengths. It is therefore more convenient to use the alternate normalization

zi ¼
X
k

!k
~AA�k ðuk � uiÞ ; ðA21Þ

which when inserted into equation (A15) will properly normalize the weighted sums of visibilities. This will then produce
images with the desired units of Jy beam�1 (see x 8). We therefore use equation (A21) for the normalization in our CBI
pipeline.
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APPENDIX B

SOURCE COUNTS AND THE RESIDUAL COVARIANCE MATRIX

Wewish to calculateCres
� (see eq. [67]) using equation (66) with �k ¼ �k0 ¼ �. If pð�j�0Þ is independent of flux density, then

Cres
� ¼

Z 1

�1
d� pð�j�0Þ

�

�0

� �2�Z Smaxð�Þ

0

dS S2 dNðSÞ
dS

; ðB1Þ

where we have left in the possibility that the upper flux density cutoff will depend on spectral index (see below) and set the
lower flux density cutoff to zero (the results for realistic power-law counts with � > �2 are insensitive to the lower cutoff, but
one can easily be included). As an example for the calculation of the fluctuation power due to residual sources in the Gaussian
limit, consider power-law integral source counts

Nð> SÞ ¼ N0
S

S0

� ��

) dNðSÞ
dS

¼ � �N0

S0

S

S0

� ���1

; ðB2Þ

where Nð> SÞ is the mean number density of sources with flux density greater than S at frequency �0 and a Gaussian spectral
index distribution at frequency �0,

pð�jS; �0Þ ¼ pð�j�0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2��2

�

p e�ð���0Þ2=2�2� : ðB3Þ

First consider the case in which there is a fixed flux density upper cutoff Smax at the frequency where the number counts are
defined. The two parts of equation (67) separate easily, where the source count part of the integral isZ Smax

0

dS S2 dNðSÞ
dS

¼ � �

� þ 2
N0S

2
0

Smax

S0

� ��þ2

: ðB4Þ

For the distribution in equation (B3), the integral over � becomesZ 1

�1
d� pð�j�0Þ

�

�0

� �2�

¼
Z 1

�1

d�ffiffiffiffiffiffiffiffiffiffiffi
2��2

�

p e�ð���0Þ=2�2�e2��

¼ e�ð���2��2
0
Þ2=2�2�

Z 1

�1

d�ffiffiffiffiffiffiffiffiffiffiffi
2��2

�

p e�ð�����Þ2=2�2�

¼ e2�eff� ; ðB5Þ

where � ¼ lnð�=�0Þ and

�eff ¼
���2 � �2

0

4��2
�

¼ �0 þ ��2
� ;

��� ¼ �0 þ 2��2
� ; ðB6Þ

where ��� is the mean of the extrapolated spectral index distribution, which remains a Gaussian, and the effective spectral index
�eff for the spectral component is shifted from the mean spectral index of the input distribution �0 by the combination of the
scatter in the � and the lever arm � from the frequency extrapolation. Putting these together, we get

Cres
� ¼ � �

� þ 2
N0S

2
0

Smax

S0

� ��þ2

e2�eff� : ðB7Þ

One can also deal with the case in which there is an upper flux density cutoff ŜSmax imposed at a frequency �̂� other than �0
where theN(S) distribution is defined. In this case, the flux density cutoff in equation (B1) is

Smaxð�Þ ¼ �SSmaxe
ð�0��Þ�̂��SSmax ¼ ŜSmaxe

��0�̂� ; ðB8Þ

where �̂� ¼ lnð�̂�=�0Þ and �SSmax is the cutoff ŜSmax extrapolated to �0 using �0. Then,Z Smaxð�Þ

0

dS S2 dNðSÞ
dS

¼ � �

� þ 2
N0S

2
0

�SSmax

S0

� ��þ2

eð�0��Þ�̂�ð�þ2Þ ; ðB9Þ
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and thus

Cres
� ¼ � �

� þ 2
N0S

2
0

�SSmax

S0

� ��þ2Z 1

�1
d� pð�j�0Þe2��eð�0��Þ�̂�ð�þ2Þ

¼ � �

� þ 2
N0S

2
0

�SSmax

S0

� ��þ2

e2�̂�eff� ; ðB10Þ

with

�̂�eff ¼ �0 þ ��2
�


2 ;

��� ¼ �0 þ 2��2
�
 ;


 ¼ 1� �̂�

2�
ð� þ 2Þ ; ðB11Þ

where 
 gives the modification of the effective spectral index due to the change in the frequency at which the cutoff is done.
One often has an upper flux density cutoff at two different frequencies. For example, sources that are extrapolated to be

bright at the CMB observing frequency will have been detected and subtracted. If there is a flux density cutoff of ŜSmax imposed
at a frequency �̂� as before, but an additional upper cutoff of ŜS0

max at another frequency �̂�0, then there is a critical spectral index

�crit ¼
ln
�
ŜS0
max=ŜSmax

�
ln �̂�0=�̂�ð Þ ðB12Þ

above which the effective cutoff �SSmax of equation (B8) changes from that appropriate to �̂� to that at �̂�0 (assuming �̂�0 > �̂�). Thus,
the integral over � in equation (B10) will be broken into two pieces,

J1 ¼ � �

� þ 2
N0S

2
0

�SSmax

S0

� ��þ2

e2�̂�eff�

Z �crit

�1

d�ffiffiffiffiffiffiffiffiffiffiffi
2��2

�

p e�ð�����Þ2=2�2� ;

J2 ¼ � �

� þ 2
N0S

2
0

�SS0
max

S0

� ��þ2

e2�̂�
0
eff
�

Z 1

�crit

d�ffiffiffiffiffiffiffiffiffiffiffi
2��2

�

p e�ð�����0Þ2=2�2� ; ðB13Þ

where Cres
� ¼ J1 þ J2. The quantities in J1 are as defined in equations (B8)–(B11), and the parameters in J2 are defined in the

same way but using the higher frequency �̂�0. The truncated Gaussian integrals are just the integrated probabilities for the
normal distribution

FðxÞ ¼ 1ffiffiffiffiffiffi
2�

p
Z x

�1
dt e�t2=2 ¼ 1

2
þ 1

2
erf

xffiffiffi
2

p
� �

; ðB14Þ

with erf ðzÞ the error function. Then,

J1 ¼ � �

� þ 2
N0S

2
0

�SSmax

S0

� ��þ2

e2�̂�eff�FðxcritÞ ; ðB15Þ

J2 ¼ � �

� þ 2
N0S

2
0

�SS0
max

S0

� ��þ2

e2�̂�
0
eff
� 1� F x0critð Þ½ � ; ðB16Þ

where xcrit ¼ ð�crit � ���Þ=�� and x0crit ¼ ð�crit � ���0Þ=��.
As an example, consider the source counts presented in Paper II (x 4.3.2), with N0 ¼ 9:2� 103 sr�1 above S0 ¼ 10 mJy at

�0 ¼ 31 GHz and � ¼ �0:875, which gives

� �

� þ 2
N0S

2
0 ¼ 0:715 Jy2 sr�1 ðB17Þ

as the raw source power. In the analysis described there, Mason et al. find that a Gaussian 1.4–31 GHz spectral index distribu-
tion with �0 ¼ �0:45 and �� ¼ 0:37 fits the observed data. The CBI and OVRO direct measurements have a cutoff of
Smax ¼ 25 mJy at 31 GHz (sources brighter than this have been subtracted from the CBI data and have residual uncertainties
placed in a source covariance matrix), and sources above ŜSmax ¼ 3:4 mJy at �̂� ¼ 1:4 GHz have already been accounted for in
a second source matrix. Therefore, the critical spectral index is �crit ¼ 0:644 from equation (B12). For � � �crit, the 31 GHz
cutoff holds. Since the cutoff and source distribution are at the same frequency as the observations � ¼ �0, there is no
extrapolation factor � ¼ 0 and the spectral index distribution is unchanged (���0 ¼ �0). Then, x0crit ¼ 2:957 and
1� Fðx0critÞ � 1:56� 10�3, so

J2 ¼ � �

� þ 2
N0S

2
0

Smax

S0

� ��þ2

1� F x0critð Þ½ � ¼ 0:003 Jy2 sr�1 ðB18Þ
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for the flat-spectrum tail of the spectral index integral. The rest of the integral uses the 1.4 GHz cutoff, which we extrapolate
using the mean spectrum to 31 GHz using equation (B8),

�SSmax ¼ ŜSmaxe
��0�̂� ¼ 0:843 mJy; �̂� ¼ �3:098 : ðB19Þ

Because � ¼ 0, we have to modify the quantities in equation (B11) by explicitly expanding the terms in 
 and canceling
remaining terms in �, giving

��� ¼ �0 � �̂��2
�ð� þ 2Þ ¼ 0:027; 2�̂�eff� ¼ 1

2 �̂�
2�2

�ð� þ 2Þ2 ¼ 0:831 ; ðB20Þ

which can then be inserted into equation (B15), giving

J1 ¼ � �

� þ 2
N0S

2
0

�SSmax

S0

� ��þ2

e2�̂�eff�FðxcritÞ ¼ 0:100 Jy2 sr�1 ðB21Þ

for xcrit ¼ 1:667, FðxcritÞ � 0:952, and thus we expect

Cres
� ¼ 0:10 Jy2 sr�1 ðB22Þ

for the amplitude of the residual sources in the CBI fields. In Paper II, it is noted that there is a 25% uncertainty on N0, and
more importantly the power-law slope of the source counts could conceivably be as steep as � ¼ �1. Taking the extreme of
� ¼ �1, we get

Cres
� ¼ 0:15 Jy2 sr�1 ðB23Þ

using the above procedure. We thus conservatively estimate a 50% uncertainty on the value of Cres
� derived in this manner.

Note that in Paper II we actually use the value of Cres
� ¼ 0:08 Jy2 sr�1 derived using a Monte Carlo procedure emulating

the integrals in equation (B13) but using the actual observed distribution of source flux densities and spectral indices. The
agreement between these two estimates shows the efficacy of this procedure in practice.

APPENDIX C

COMPARISON WITH THE HOBSON & MAISINGER (2002) METHOD

Recently, Hobson &Maisinger (2002) have independently proposed a binned (u, v)-plane method that is somewhat similar
to ours, although it is more directly related to the ‘‘ optimal maps ’’ of Bond & Crittenden (2001). Hobson &Maisinger (2002)
use a gathering mappingH (M in their notation),

V ¼ Hsþ e ; ðC1Þ

rather than our scattering kernelQ of equation (21). In the Hobson &Maisinger (2002) method, the vector s can be thought of
as a set of ideal pixels in the (u, v)-plane. They show that the likelihood depends on binned visibilities v and noise n,

v ¼ HyE�1H
� ��1

HyE�1V ¼ sþ n ;

n ¼ HyE�1H
� ��1

HyE�1e ; ðC2Þ

where

CN ¼ nny
� �

¼ HyE�1H
� ��1

: ðC3Þ

The Hobson &Maisinger (2002) kernelHjk is chosen to equal 1 if the uj of visibility Vj lies in cell k, although other more com-
plicated kernels could be imagined. The Hobson &Maisinger (2002) method will also give a calculational speedup through the
reduction in number of independent gridded estimators, and the use of the method is demonstrated using simulated VSA data
in their paper.
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