
The diagnostic programs of the CCB.

[Document number: ???, revision 1]

Martin Shepherd
California Institute of Technology

November 2, 2005



This page intentionally left blank.



Abstract

This document describes a suite of programs that can be used to test and diagnose problems
in the CCB. These programs include passive programs that display dump-mode samples,
but don’t control the CCB, and active diagnostic programs which both control the CCB,
and read back data.



Contents

1 Introduction 3

2 Dump-mode visualization programs 4

2.1 ccb display dump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Diagnostic test programs 6

3.1 Commonly used command-line arguments . . . . . . . . . . . . . . . . . . . 6

3.2 ccb test phase timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 How the program works . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.2 Optional command-line arguments . . . . . . . . . . . . . . . . . . . 10

3.3 ccb test adc delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 How the program works . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.2 Optional command-line arguments . . . . . . . . . . . . . . . . . . . 13

3.4 ccb test dc response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4.1 How the program works . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.2 Optional command-line arguments . . . . . . . . . . . . . . . . . . . 14

3.5 ccb test fake samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5.1 How the program works . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5.2 Optional command-line arguments . . . . . . . . . . . . . . . . . . . 15

3.6 ccb test fake integ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6.1 How the program works . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6.2 Optional command-line arguments . . . . . . . . . . . . . . . . . . . 16

3.7 ccb test sample stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.7.1 Optional command-line arguments . . . . . . . . . . . . . . . . . . . 16

2



Chapter 1

Introduction

The CCB manager is optimized for astronomical observervations, where all that the observer
wants is for the manager to acquire data and archive it to disk, for subsequent analysis off-
line. When debugging problems with the hardware, it would be tedious and error-prone to
have to set up an observation scan, arrange for the resulting data to be written to a file,
and then run another program on that file. This would preclude tests that involved taking
hundreds of scans, each with different configuration parameters. It would also preclude
procedures that involved eyeballing the data while interactively tweaking something in the
hardware.

For these reasons two classes of test programs have been provided that are optimized for
performing diagnostic tests and performing real-time visualization.

1. Passive dump-mode visualization programs

Passive dump-mode visualization programs allow one to syphon-off and display dump-
mode data, while the CCB is being separately controlled by either the CCB manager,
or by the ccb demo client program.

2. Diagnostic test programs

Diagnostic test programs not only collect data and analyse it, but also configure the
CCB, and tell it when to start diagnostic scans. They thus handle all of the steps that
would otherwise have to be performed by hand with the manager and off-line analysis
programs, and can be run quickly and repeatedly.

3



Chapter 2

Dump-mode visualization programs

The following is a short summary of the dump-mode visualization programs:

ccb display dump - Continuously display dump-mode samples, as they ar-
rive. This program requires that a separate manager or
the ccb demo client program be used to start a dump
scan.

2.1 ccb display dump

This program displays dump-mode data, whenever the CCB manager or the ccb demo client
programs execute dump-mode scans. When no dump-mode scan is in progress, it displays
nothing.

Note that when displaying dump-mode samples on a terminal, it usually makes sense to
reduce the number of samples that are acquired per dump-frame to less than the number of
lines in the terminal window. With the ccb demo client program, this is done by finding the
entry box that says samples/frame and changing the value shown there to (for example) 15.
You will then see the first 15 samples of each integration period.

The program accepts the following optional arguments:

• -host hostname
Specify which CCB computer to contact. If this option isn’t used, then the default
host-name, “ccb1.gb.nrao.edu” is assumed.

• -base n
Specify which numeric-base should be used to display the numbers. Legal forms of this
option are:

4



-base 2 - Display in binary.
-base 8 - Display in octal (base 8).
-base 10 - Display in decimal (the default).
-base 16 - Display in hexadecimal (base 16).

If this option is not used, then the numbers are displayed in decimal.

5



Chapter 3

Diagnostic test programs

The following is a short summary of the diagnostic test programs:

ccb test phase timing - Acquire phase-switch response curves.
ccb test adc delay - Measure noise versus the ADC-clock delay.
ccb test dc response - Acquire the response to a linear DC ramp.
ccb test fake samples - Verify that test-mode dump samples match the expected

values of pseudo-random test samples.
ccb test fake integ - Verify that test-mode integrations match the expected

sums of pseudo-random test samples.
ccb test sample stats - Measure the mean and RMS noise of one dump-mode

frame of 16383 ADC samples per input-port and phase-
switch state.

3.1 Commonly used command-line arguments

The following command-line options are common to many of the test programs. Which
programs support which arguments will be described separately for each program, along
with any program-specific arguments.

• -host hostname

By default each of the test programs assumes that the CCB server is running on the
computer at ccb1.gb.nrao.edu. The -host argument allows one to tell a test program to
talk to a CCB server on a different computer.

For example:

ccb_test_program -host ccb2

6



would run a test program called ccb test program, and tell it to talk to a local computer
called ccb2, instead of ccb1.

• -repeat n

By default, with the exception of ccb display dump, the test programs run their tests
once, then exit. If you wish to run a given test multiple times, use the -repeat argument
to specify how many times. The special value of 0 (ie. zero) indicates that the program
should repeat its test indefinitely.

For example:

ccb_test_program -repeat 2

would cause a program called ccb test program to run its test 2 times, instead of just
once.

• -conf assignments

This parameter can be used to override a test program’s default CCB configuration
parameters. It’s argument should be a single text string that contains one or more
assignments to named configuration parameters, separated by spaces. Beware that
because the configuration string must be a single string, the space-separated list of
assignments should be enclosed within quotes.

ccb_test_program -conf "samp_per_state=500"

would tell a test program called ccb test program to have the CCB advance from one
phase-switch state to the next every 500 × 100ns ADC samples, instead of whatever
default number the program normally chooses.

Note that programs that provide this option, also display the final configuration to the
terminal, before starting to run their tests.

• -verbose

By default, most test programs only display their conclusions of analysing data that
they obtain. To see intermediate details, such as the values of samples obtained, then
include the -verbose flag.

ccb_test_program -verbose

7



• -port 1-16

Test programs that operate the CCB in dump-mode, and only read from one front-
panel input-port, default to acquiring data that arrive at the J1 input port on the
front-panel of the CCB. To use a different port, locate the port on the front panel of
the CCB, and enter the number that follows the J of its name.

For example,

ccb_test_program -port 2

would tell a program called ccb test program to acquire data from the J2 input port of
the CCB.

Subsequent sections describe these programs in more detail.

3.2 ccb test phase timing

This program obtains low-noise averages of the time evolution of the CCB’s response to
phase-switch transitions. From these averages, it attempts to automatically figure out the
roundtrip delay and settling times of the phase-switching signals. It can also optionally be
told to display the phase-switch response curves to the standard output of the program, in
the form of a table with 3 columns of numbers, the first column specifying the delay of each
row of the table, with respect to the originating transition of the phase-switch control signal,
the second column showing the average sample at this time for a switch-off transition, and
the third showing the average sample at this time, for a switch-on transition.

If the numbers in the displayed table are imported into a program, such as IDL or Gnuplot,
and the numbers in the 2nd and 3rd columns are plotted versus the numbers in the 1st
column, then the time evolution of the response of the CCB to off and on phase-switch
transitions can be examined by eye.

3.2.1 How the program works

Looked at from a high-level, what this program does is the following:

1. It starts a dump-mode frame, with both of the phase-switches held continuously in
the off state, and after discarding data from one integration-period, to ensure that the
phase-switches have had time to settle into the off state, it takes a single dump-mode
frame. It then measures the mean value of the samples in this dump-frame, along with
the scatter about that mean. In verbose mode, it displays these numbers.

8



2. Next it does the same thing, but this time with both phase-switches turned continu-
ously on.

3. The program now has good estimates of the noise levels of data from both the on and
the off states of the phase-switches. It subsequently uses this information to anticipate
the noise levels of averages of multiple frames of data.

4. Now the program configures the chosen phase-switch to toggle, while holding the other
phase-switch turned off. This results in a phase-switch cycle of two states. The first
state of each cycle is configured to hold the phase-switch off, while the second holds
the phase-switch on. Thus at the start of each integration period the phase-switch
should be transitioning from on to off, and the average of multiple dump-mode frames
of data from the start of each integration period should reveal a low-noise picture of
the response in the data to a single phase-switch turning off.

5. The program now starts a dump-mode scan with the above configuration, and acquires
and averages together a specified number of frames of data. It then keeps this average
“switch-off” frame for later analysis and possible display.

6. The program then repeats the above two steps, except that instead of configuring
the chosen phase-switch to be turning on at the start of each integration period, it
configures it to be turning off. Thus the program also acquires an average frame of
data containing a switch-on transient.

7. If the -verbose command-line flag has been specified, the program now displays the
contents of the two averaged frames of the switch-off and switch-on transients side by
side. If the standard output of the program has been redirected to a file, then these
two columns of numbers can be read into a program, such as IDL or Gnuplot, and
plotted, to show the response curves of the receiver to phase-switch transitions.

8. The program now attempts to measure the roundtrip phase-switching control-delay
and the phase-switch settling time from the averaged frames.

The roundtrip delay is the amount of time that elapses between the CCB telling the
receiver to change the state of a phase-switch, and the initial effects of this being seen
in the data that are received by the CCB. This includes rise-time and cabling delays
in the RFI-filtered digital control-signals that switch the phase-switches, the response
time of the post-detector Bessel filters, and the pipeline delay of the ADCs in the CCB.
When the CCB’s roundtrip dt parameter is set to zero, the visible effect in the received
data, of phase-switch transients, is to see a few samples at the start of each integration
that don’t change, to within the noise level, followed by the signal starting to rise or
fall, in response to the phase-switch transition.

The program uses a simplistic algorithm to determine the roundtrip time, and applies
this separately to the mean switch-off and switch-on frames. It uses the noise level
that was previously computed, for the phase-switch state that preceded the switch
transition, multiplies this by a parameter nsigma, which can be set by the -nsigma
argument, and looks for the first sample of the averaged frame, that differs by at least

9



this amount from the value of the first sample of the frame. No assumptions are made
about which direction this deviation should be in, since this depends on the RF inputs
to the two horns of the receiver.

The roundtrip dt CCB configuration-parameter, which is specified as a number of 100ns
sample intervals, needs to be set to one greater than the number of quiescent samples
that are found at the start of the integration period. Thus the program outputs this
number.

Given that both the phase-switch control signals, and the cal-diode control signals
traverse equivalent circuitry to their respective switches, and transients in the data have
to go through the same signal-path, regardless of what caused them, the CCB assumes
that a single common roundtrip-delay parameter is sufficient to accomodate all of these
switching signals. This program, however, outputs two estimates of the roundtrip dt
parameter; one for switching on phase-switches and one for switching them off. If
these numbers are significantly different, and looking at the data by eye confirms this
discrepancy, then the smaller of the two numbers should be used, since using a number
that is too large for one of the transitions, would result in data from the transition
being moved into the end of the previous phase-switch state, where it wouldn’t be
blanked.

9. Next the program attempts to deduce the settling time of the phase-switch transitions.
It does this by searching the samples that follow the roundtrip quiescent period, for the
first sample that differs from its predecessor by less than nsgima times the anticipated
noise level of the post-switch signal level.

It then displays this number minus the roundtrip delay, to indicate the corresponding
value of the CCB phase switch dt configuration parameter.

In practice, it may make more sense to plot the switch-on and switch-off responses, and de-
duce roundtrip and settling times from them by eye, than to rely on the simplistic algorithm
that is described above. This can be done by using the -verbose command-line option, to
tell the program to output the average phase-switch responses as columns of numbers, and
then read these numbers into a plotting program, such as Gnuplot or IDL.

If you do this, be sure to zoom in on the response curves, in order to be able to see the
asymptotic parts of the long tails of these curves, where the deviation may still be significant
in integrated data, even if they look very small.

3.2.2 Optional command-line arguments

The ccb test phase timing program has the following optional arguments:

• -host hostname
Specify which CCB computer to contact (See section 3.1).

10



• -repeat n
Specify how many times to repeat (See section 3.1).

• -conf assignments
Modify the CCB configuration parameters (See section 3.1)

Note that in this program, the only configuration parameter that can reasonably be
changed, is the samp per state parameter, which configures the length of each phase
switch state. It makes sense to modify this parameter, because it also sets the length
of the dump frames that the program reads, and thus determines the duration of the
time after each phase-switch transition, that is acquired. For example

ccb_test_phase_timing -conf "samp_per_state=500"

would tell the program to acquire dump-mode frames of 500 samples, as well as causing
it to toggle the chosen phase-switch every 500 × 100ns. This would allow the phase-
switch responses to be examined out to 500× 100ns. Beware that the run-time of the
program scales directly with this number. This is because the speed of the program
is limited by the rate at which data can be received from the firmware over a USB1.1
link.

Note that if the value of the samp per state parameter isn’t changed in this way, it
defaults to 1000.

• -verbose
Display intermediate details and data (See section 3.1)

• -port 1-16
Select which input port is sampled (See section 3.1)

• -switch a or b

By default the program toggles phase-switch A, while holding phase-switch B in a
steady state. Thus the acquired phase-switching response is that caused by toggling
phase-switch A. To have phase-switch B toggled instead of A, one would type:

ccb_test_phase_timing -switch b

• -average number-of-frames

Unless told otherwise, the program averages 10000 frames of dump-mode samples,
separately for the switch-on and switch-off transients, to acquire low-noise averages of
the corresponding phase-switch response curves. This number can be changed with
the -average command-line argument. Thus to reduce the number of frames that are
averaged to 2000, one would type:

11



ccb_test_phase_timing -average 2000

Since the run-time of the program scales linearly with this number, the above example
would reduce the run-time by a factor of 5. The drawback of this would be that the
noise level would be increased by a factor of

√
5.

• -nsigma factor

When the program attempts to locate the first sample that changes by a significant
amount from the quiescent value at the start of a phase-switch transition, and when it
then attempts to figure out when the transition has stabilized, it interprets deviations
in the signal as being significant if they exceed the measured noise level, multiplied
by a factor. This factor, which defaults to 1.0, can be changed with the -nsigma
command-line argument.

Thus, to make the program notice deviations in the signal, of half the measured noise
level, one would type:

ccb_test_phase_timing -nsigma 0.5

3.3 ccb test adc delay

The purpose of the ccb test adc delay program is to measure the noise levels of all of the CCB
inputs, as a function of the phase-shift-delay between the FPGA and ADC clock signals. It
optionally displays all of the measured noise levels, and then outputs the delay that results
in the lowest noise levels across all inputs.

3.3.1 How the program works

Looked at from a high-level, what this program does is the following:

1. Unless the default configuration is changed on the command-line, the program arranges
that there will be no phase-switching or cal-diode switching in any of the scans that it
starts.

2. For each of the input ports and each of the 10 supported clock delays, the program
then does the following:

(a) It starts a dump-mode scan for the specified input-port, and reads one dump-mode
frame of samples.

12



(b) It then works out the mean of the samples, along with the standard deviation of
this mean, and stores these numbers for later analysis.

(c) If the -verbose command-line flag was specified, the program then displays the
mean ADC count and standard deviation, along with the name of the originating
port, the current ADC delay, and the number of unsaturated ADC-samples that
went into the mean.

3. Next, if the -verbose command-line flag was specified, the program displays a table of
noise levels versus ADC delay and input port.

4. It then finds the ADC delays that resulted in the lowest noise levels of each of the
input ports, and prints these to the terminal.

5. Finally, it computes the noise levels as a function of ADC delay, averaged across the
measurements from all ports, and prints these numbers out, followed by a line that
indicates which ADC delay resulted in the lowest average noise level across all ports.

3.3.2 Optional command-line arguments

The ccb test adc delay program has the following optional arguments:

• -host hostname
Specify which CCB computer to contact (See section 3.1).

• -repeat n
Specify how many times to repeat (See section 3.1).

• -conf assignments
Modify the CCB configuration parameters (See section 3.1)

• -verbose
Display intermediate details and data (See section 3.1)

3.4 ccb test dc response

This program explores the response of the CCB to a staircase ramp of DC input signals. To
do this it requires that the ribbon cable that connects the CCB computer to the GPIO card
be replaced with the test ribbon cable that breaks out one of analog output channels of the
GPIO card to a coaxial cable that can be plugged into the test video-amplifier module. In
addition to optionally printing a row of statistics for each DC input-level, it fits a straight
line to the graph of input voltage versus measured ADC count, and reports both the gradient
and zero-offset of this line.

13



3.4.1 How the program works

What the program actually does is the following:

1. The program starts a loop over the range of GPIO-card DAC counts that generate
differential voltages covering the input-range of the CCB inputs.

For each of these voltages, the program does the following:

(a) It sets the analog output of the GPIO card to the voltage that is dictated by the
loop-variable.

(b) It then starts a dump-mode frame for the selected input port, with the phase-
switches and cal-diodes held in the off position.

(c) It then reads one dump-mode frame, computes the mean value of its samples, and
the standard deviation of the samples from the mean.

(d) It internally records the mean and standard deviation, for later analysis, and
in verbose mode, displays a row of numbers, showing the input voltage at the
selected input-port, the aformentioned mean value and standard deviation, and
the number of unsaturated samples that went into the mean.

2. Now that the program has a list of mean ADC counts and variances, as a function
of voltage, it fits a straight line to the mean counts versus voltage, weighted by the
inverse of the variances, and reports the best fit gradient (gain), and zero-offset of the
ADC counts.

3.4.2 Optional command-line arguments

The ccb test dc response program has the following optional arguments:

• -host hostname
Specify which CCB computer to contact (See section 3.1).

• -repeat n
Specify how many times to repeat (See section 3.1).

• -conf assignments
Modify the CCB configuration parameters (See section 3.1)

• -verbose
Display intermediate details and data (See section 3.1)

• -port 1-16
Select which input port is sampled (See section 3.1)

14



3.5 ccb test fake samples

This program uses dump-mode to verify that when the CCB is told to replace the real ADC
samples with fake samples, that the resulting sequence of fake samples matches the expected
pseudo-random sequence.

3.5.1 How the program works

The ccb test fake samples program configures the CCB to substitute fake samples for real
ADC samples, and then takes a dump-mode frame of data. Since the pseudo-random fake
sample generator resets itself at the start of each integration period, the value that each
sample in the frame should have, is known. Thus the program simply compares the acquired
samples with the expected sequence. In verbose mode it also displays the acquired samples
and their expected values, as a table.

3.5.2 Optional command-line arguments

The ccb test fake samples program has the following optional arguments:

• -host hostname
Specify which CCB computer to contact (See section 3.1).

• -repeat n
Specify how many times to repeat (See section 3.1).

• -conf assignments
Modify the CCB configuration parameters (See section 3.1)

• -verbose
Display intermediate details and data (See section 3.1)

• -port 1-16
Select which input port is sampled (See section 3.1).

Note that changing the port number may be used to test the different daughter-cards,
since each card handles a different set of 4 input ports.

3.6 ccb test fake integ

This program uses integration-mode to verify that when the CCB is told to replace the real
ADC samples with fake samples, that the integrated values in each phase-switch bin of each

15



input port, match the corresponding expected sums of the known sequence of pseudo-random
fake samples.

3.6.1 How the program works

The ccb test fake integ program configures the CCB to substitute fake samples for real ADC
samples, and then takes an integration-mode frame of data. Since the pseudo-random fake
sample generator resets itself at the start of each integration period, the fake numbers that
are summed into each phase-switch bin can be calculated. Thus these numbers are compared
to what are actually acquired, and any differences are reported. In verbose mode, both the
expected and the acquired integrated values are also displayed.

3.6.2 Optional command-line arguments

The ccb test fake integ program has the following optional arguments:

• -host hostname
Specify which CCB computer to contact (See section 3.1).

• -repeat n
Specify how many times to repeat (See section 3.1).

• -conf assignments
Modify the CCB configuration parameters (See section 3.1)

• -verbose
Display intermediate details and data (See section 3.1)

3.7 ccb test sample stats

The ccb test sample stats program takes one dump-mode frame of samples for each combi-
nation of CCB input-port and phase-switch state, with the phase-switches not switching. It
then computes the mean of the samples in each dump-frame, along with the RMS of the
deviations of these samples from the mean. As it does this, it reports these numbers to the
terminal.

3.7.1 Optional command-line arguments

The ccb test sample stats program has the following optional arguments:

16



• -host hostname
Specify which CCB computer to contact (See section 3.1).

• -repeat n
Specify how many times to repeat (See section 3.1).

• -conf assignments
Modify the CCB configuration parameters (See section 3.1)

• -verbose
Display intermediate details and data (See section 3.1)

17


