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Abstract

The aim of this document is to detail the design of the CCB FPGA firmware, and define its
interfaces to the rest of the CCB hardware. The design will be presented in a hierarchical
manner, starting with block diagrams of major components and their interconnections, and
ending with the VHDL code that synthesizes the lowest level components displayed, and
connects them together.

[This is still a work in progress]
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Chapter 1

Introduction

Figure 1.1: An overall summary of the FPGA connections

Figure 1.1 shows the overall architecture of the FPGAs with respect to the rest of the CCB.
At the heart of the system, the Master FPGA controls 4 slave FPGAs, receives commands
from the computer’s EPP parallel port, delivers interrupts to the computer, via the same
link, dispatches observed data to the computer over a USB link, and controls calibration
diodes and phase switches in the receiver. All of its timing signals are derived from the
Green Bank 10MHz and 1PPS reference signals.
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Under the direction of the Master FPGA, each of the slave FPGAs continuously reads 14-bit
data samples from 4 ADCs at 10MSPS, and integrates these samples until told to deliver
them to the Master FPGA, or, when in dump mode, delivers them un-integrated to the
Master FPGA.

The following two chapters detail the internal logic and external interconnections of the Slave
and Master FPGAs, respectively.
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Chapter 2

The slave FPGAs

There will be 4 slave FPGAs controlled by one master FPGA. All of the slave FPGAs will be
identical, so this chapter documents the internal components, and external I/O connections
of a single slave FPGA. Figure 2.1 shows the layout of a slave FPGA, showing the major logic
components within the FPGA, the internal interconnections between these components, and
all of the external I/O-pin connections to the 4 ADCs to the left, and to the master FPGA,
shown at the bottom of the diagram.

2.1 An overview of the internals of a slave FPGA

Starting from the left hand side of the diagram, the 14 bit data-signals and 1-bit overflow
signal of each of the 4 ADCs, are simultaneously latched into a corresponding 15-bit register
at the start of every 10MHz clock cycle. Simultaneously, the previous values of these registers
are read by integrator components. When in dump mode, the output of one of these 15-bit
outputs is also siphoned off, to be read directly by the master FPGA. The outputs of the
integrators are subsequently flash loaded into a PISO, at the end of each integration, ready
to be read out by the master FPGA.

2.1.1 Normal integration mode

When not in dump mode, the output of each ADC, delayed by one clock cycle by the input
register, and by another 4 clock cycles by the pipeline within the ADC, is read into an
integrator component.

The integrator component, which will be detailed shortly, either ignores the new sample,
if the drop signal from the master FPGA is asserted, or adds it to the accumulation bin
specified by the 2-bit phase signal, as received from the master FPGA.
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Figure 2.1: The top-level design of the slave FPGA
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At the end of each integration period, the master FPGA asserts the start signal for one
clock cycle. This causes the output PISO, on the right of the diagram, to flash-load the
contents of all of the 32-bit accumulator output bins of the integrators, and at the same
time, the integrator components clear all of their accumulators, and add in the latest sample
to the appropriate empty bin, unless the drop signal is asserted.

The accumulator bins are 32-bits wide, but there are only 16 pins available for clocking the
data out of the slave FPGA. Therefore a 16-bit wide FIFO is used, with two entries assigned
to each accumulator bin. Since there are 4 accumulator bins per integrator, 4 integrators,
and 2 PISO entries per accumulator, the 16-bit wide PISO will be 32 entries in length.

Once the PISO has been flash loaded with the accumulator values, its empty signal becomes
deasserted, which tells the master FPGA that there are new integrations waiting to be read
into its output PISO. When the master FPGA is ready to do this, it clocks the read line
of the slave FPGA, in sync with the global 10MHz clock, to read out the PISO. Once all
data have been read from the PISO, its empty signal is asserted, telling the master FPGA
to direct its attention to reading data from another slave FPGA, if any.

2.1.2 Dump mode

In dump mode, although the integrators still integrate data, the tri-state output driver
following the PISO, is placed into a high impedance state, to enable one of the 16-bit tri-
state drivers at the outputs of the ADC input registers, to instead direct the output of a
chosen ADC, directly to the data output of the slave FPGA. In this mode, the 2-bit phase
signal is re-interpreted as the address of the ADC to be dumped, so an address decoder,
which is only enabled when the dump signal is asserted, is used to enable the chosen tri-state
buffer, according to this address.

At the end of dump mode, the master FPGA briefly asserts the slave FPGA’s reset signal,
to discard the garbage contents of the integrators and the output PISO, before normal
integration mode resumes.

2.1.3 External connections

The FPGA I/O pins should be configured for 3.3V logic levels.

Provided that the DRVDD pins of the ADCs are connected to a 3.3V power-supply, then the
output data pins of the ADCs can directly drive the corresponding input pins of the FPGA.
This may not be the case if there are cables or filters in between. Unfortunately, the ADC
clock input appears to require higher CMOS levels, regardless of the voltage at the ADC
DRVDD pin. Hence the individual 3.3V to CMOS buffer amplifiers between the FPGA clock
output pins and the ADC clock input pins. If the clock output pins of the FPGA are close
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together, then presumably the number of FPGA clock output pins could be reduced; as
could the number of separate buffer chips.

Note that an assumption in this design, which may not be correct, is that the interconnections
between master and slave FPGAs, and between the slave FPGAs and the analog board, will
be via daughter-board connectors, rather than via cables and EMI filters. The scenario in
mind has a central board housing the master FPGA, the USB interface and the parallel port
interface, then on the component side of this board, would be 4 daughter cards holding the
slave FPGAs, and on the other side of the board, shielded by the ground plane of the master
FPGA board, would be the daughter board housing the analog electronics. The connections
from the ADCs to the slave FPGAs would thus go via two levels of daughter card connectors.
If a significantly different scheme is adopted, which includes inter-board cabling and/or EMI
filtering, then extra buffer amplifiers may need to be added for the data lines, along with
some means to compensate for any rise time delays added by EMI filters.
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Chapter 3

The master FPGA

Figure 3.1 shows the layout of the master FPGA, showing its major internal components,
along with their interconnections, and all of the external I/O-pin connections to external
chips. The central brain of this design, is the State Generator component, which orchestrates
the timing and values of all control signals going to the other components and the slave
FPGAs. The State Generator is in turn told what to do by the computer, via the Control
Gateway component, which handles all interactions with the parallel port interface. The
Data Dispatcher component is responsible for sending integrated and dump-mode data to
the computer, via the USB interface.

3.1 The Control Gateway

The Control Gateway handles all interactions with the CCB computer’s EPP parallel port
interface. It places commands and configuration data that it receives from the computer,
within an array of registers, which are always visible to the State Generator. It also raises
parallel-port interrupts, when so directed by the State Generator. Note that apart from the
interrupt mask, which is read by the computer from its interrupt handler, all data is directed
from the computer to the FPGA.

The reset signal of the EPP parallel port is used to reset the firmware and the USB chip.
This can be asserted at any time by the device driver in the CCB computer, and this will
automatically be done every time that the device driver is loaded or reloaded.

The Control Gateway component will be designed to present an 8-bit register based interface
to the computer. This is simplified by built-in support for separate address and data cycles in
standard EPP hardware. In particular, the receipt of an address-byte by the Control Gateway
will be interpreted as the address of the 8-bit register into which to record subsequently
received data-bytes.
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Figure 3.1: The top-level design of the master FPGA
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Since no read-back of the internal registers is planned, any read request from the computer
will be responded to with the interrupt mask, which will say which interrupts have been
generated since the last time that this mask was read. This mask can thus be read from an
interrupt handler with a single EPP read, without having to worry about other incomplete
multi-byte read transactions.

There are only two times when data will be sent to the master FPGA by the computer.

1. When starting a new scan, a write to the control register will be used to prepare
the State Generator for reconfiguration. This will be followed by multiple writes, to
send the configuration data of the new scan, and terminated by the command which
instructs the State Generator to start the new scan.

Since the FPGA does nothing with the configuration data that it is sent, until it is told
to start the next scan, it is safe to send the values of multi-byte configuration registers,
a byte at a time.

2. During a scan, the configuration of the calibration diodes (for the integration after the
next integration), will be sent, on receipt of each end-of-integration interrupt.

Since between scans, only the calibration diode configuration register is written to, the
device driver will send the address of this register once per scan, just after starting
each new scan, such that the interrupt handler needn’t specify the register to write its
cal-diode reconfiguration info into, before writing said info. Thus at the end of each
integration period, there will be one EPP read to get the interrupt mask, plus one EPP
write to reconfigure the calibration diodes.

3.2 The Data Dispatcher

At the end of each integration period, and at the start of dump mode, the Data Dispatcher
component will read integrated or dump-mode data from the slave FPGAs into a large FIFO,
then stream the contents of this FIFO, preceded by a header, to the computer, via the USB
link. Note that all communications over the USB bus will be directed from the FPGA to
the computer. Thus, although the read (rd) and read-enable (rxf) pins of the USB interface
are shown as inputs to the Data Dispatcher, there are no plans to use them at the moment.

Note the use of the DLP-USB245M module. This is a tiny PCB module containing a 6MHz
crystal, a surface-mount FT245BM USB1.1 chip, a USB connector and all the interconnec-
tions needed between these parts. The PCB is just 1.5 × 0.7 inches in size, and the USB
connector sticks out a further third of an inch from one end. The module can be soldered
onto the CCB PCB, via 24 dual in-line pins. Its data-sheet can be downloaded from:

http://www.dlpdesign.com/usb/dlp-usb245m12.pdf
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The two of these modules that I bought for testing the FT245BM, I got from a company
called Saelig (www.saelig.com), which is an official US distributor for the FT245BM. The
modules arrived overnight. Since then, I have noticed that Mouser Electronics carries them
as well. Their catalog number at Mouser is 626-DLP-USB245M, and they cost $25.

3.2.1 The internals of the Data Dispatcher

The above figure shows the building blocks of the Data Dispatcher, and how they are inter-
connected. All data available from one slave at a time, are read by the Slave Reader and
passed on to the Frame Buffer. The current slave to read from, is selected by the Slave
Selector, which cycles through the slaves in reverse numerical order, when reading out inte-
grated data, or settles on the slave that is specified by its dslave input signal, when in dump
mode. The frame output signal of the Frame Delimiter controls the packaging of output
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data frames within the Frame Buffer. When the frame signal goes high, a new output data
frame is initialized, and data from the slaves start to be transfered to the Frame Buffer.
When all data from the slaves have been transfered, or the frame-buffer becomes full, the
frame signal goes low, to terminate the frame. The frame signal doesn’t go high again until
the next rising edge of the start signal from the State Generator, and even then, it only
goes high if the previous contents of the Frame Buffer have been completely transfered to
the CPU over the USB bus. These measures prevent a new frame from trampling on an
incompletely sent frame, and prevent temporary buffer-full conditions in dump mode, from
creating unpredictable sampling gaps within a frame.

The Frame Buffer contains a large FIFO for the slave data, plus a small PISO which is
initialized to contain a frame header, consisting of a time-stamp, an indication of whether
dump mode was in effect, and a scan sequence number.

Once a new frame has been started, the contents of the Frame Buffer are clocked out, starting
with the frame header, and followed by the slave data, in 16-bit chunks. Each chunk is loaded
into a 2 entry, 8-bit wide PISO, such that 8-bits at a time can be clocked out to the USB
chip, whenever the USB chip has room in its own internal FIFO, for more data. When both
the Frame Buffer and the 8-bit PISO have been emptied of all data, the usb flush signal is
asserted, to tell the USB chip to send all remaining data to the CPU, as soon as possible,
without waiting for enough data to precisely fill up the final USB block.

The internals of the Frame Delimiter

When the end input signal is asserted at the start of a clock cycle, the frame output becomes
deasserted, regardless of the state of the begin input signal. This terminates the assembly
of an output frame. The frame signal does not go high again, until the start of a clock cycle
when the begin signal is newly asserted, after the end signal has been deasserted.

This means that a new frame will not begin if the begin signal is asserted while the end
signal is still asserted, and that if the end signal becomes asserted during a frame, the frame
is terminated, regardless of the state of the begin input.
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The internals of the Slave Selector

The purpose of the Slave Selector is to tell the Slave Reader which slave FPGA to read data
from, and to provide an indication of whether any data remain to be read, both from the
slave that is being read from, and from any slaves that remain to be selected. The slave
output signal specifies the selected slave FPGA as a 2-bit slave number, and the empty
output specifies when the slaves have been exhausted of data to be read. These outputs are
only valid on the rising edges of the clock.

In normal integration mode, all of the slave FPGAs have data available in their PISOs at
the end of each integration period. So all of their empty lines become deasserted. A priority
encoder in the Slave Selector looks at logically inverted versions of these empty signals, to
select the highest numbered slave that still has data available to be read. Thus as soon as
the highest numbered slave has had all of its data read out by the Slave Reader, the Slave
Selector detects this, and selects the next highest slave that has its empty signal deasserted.
In this way, it causes the Slave Reader to read-out the slave FPGAs in the order 3,2,1,0. At
the same time, it routes the empty input signal of the selected slave to the empty output
signal of the Slave Selector. Thus at the start of each new clock cycle, the output empty
signal of the Slave Selector is high until all of the slaves have been exhausted of integrated
data.

In dump mode, as specified by the dump input signal being asserted, the slave selection of
the priority encoder is overridden by the slave number specified by the 2-bit dslave input
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signal, and the output empty signal reflects the empty input signal from this slave. Since
in dump mode, slaves can indefinitely deliver data at 10MSPS, the empty signal remains
deasserted in this mode, until the State Generator deasserts the dump signal.

The internals of the Slave Reader

The Slave Reader uses its slave input signal to connect the data and read signals of
the correspondingly numbered slave FPGA, to the so input and q output signals of the
Slave Reader. Thus a read-strobe on the so input of the Slave Reader, is routed through
demultiplexer, DMUX1, to the read output going to the selected slave, while the data that
this returns from the selected slave is routed through the multiplexer, MUX1, to the q output
of the Slave Reader.
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The internals of the Frame Buffer

The Frame Buffer has two major parts, a 16-bit wide PISO containing a frame header, and
a large 16-bit wide FIFO containing integrated or dump-mode data. The outputs of the
Frame Buffer simulate the output of a virtual 16-bit wide FIFO, formed from the serialized
concatenation of the contents of these two parts, with the header coming out first, followed
by the data.

The glue logic with which the Data Dispatcher embeds the Frame Buffer, ensures that a new
frame can not be started unless the Frame Buffer is empty. Thus at the start of a new frame,
both the data FIFO and the header PISO of the Frame Buffer, are guaranteed to be empty.
The start of a new frame is signaled by a rising edge on the new input, which is externally
connected to the frame output of the Frame Delimiter in the Data Dispatcher.

At the start of a new frame, the rising edge of the new input signal causes the header PISO
to load the contents of the header, as derived from input signals received from the State
Generator. The header currently consists of 4 16-bit words, which are as follows.

• The first of the 16-bit header words identifies the type of frame that is being packaged,
and since it has a value that doesn’t look like a data value, the CPU can use it as the
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indication of the start of a new frame, in case other frame separation measures don’t
work.

Note that since a normal data value will either be zero, in the case of a missing ADC
board, or a significantly non-zero number, in the presence of sampled noise, a small
non-zero 16-bit number, is a good choice for something that shouldn’t look like a data
byte.

In practice, the least significant bit is hard-wired to be 1, to ensure that the header is
always zero, the second bit is 0 in normal integration mode, and 1 in dump mode, and
the remaining 14 most significant bits are always 0. Thus this 16-bit integer will have
the value 1, in normal integration mode, and 3 in dump mode.

• The second of the header words is a 16-bit scan sequence number. This reflects the
value of a counter in the State Generator, which is reset to zero, whenever the FPGA
firmware is reset, and incremented by 1 whenever a parallel port command to start
a scan or intra-scan is received. The CPU will use this both to watch for the first
integration of a newly requested scan, and potentially to watch for missing scans.

• The 3rd and 4th words are the least and most significant 16 bits of a 32-bit time-stamp.
This is the value of a counter in the State Generator which is reset to zero at the start
of each new scan, and incremented by 1 every one-thousand 100ns clock cycles. Thus
the time-stamp measures the time elapsed since the start of the second on which the
last scan started, has a resolution of 100µs, and wraps around every 5 days.

Note that the resolution is one tenth of the minimum required integration period.
Greater resolution would be overkill, and would unnecessarily cause the time-stamp
clock to wrap-around more frequently. Lower resolution could lead to two integration
periods getting the same time-stamp. On the real-time computer, the sum of the
absolute time of the 1PPS edge on which the scan was started, and the FPGA relative
time-stamp, will form the high-resolution time-stamp that is sent with the data, to the
manager.

On the same clock edge at which the new signal goes high, data become available from the
slaves. These data are synchronously clocked into the FIFO, 16-bits at a time, by the Data
Dispatcher, using the si, shift-in, input and the d, data inputs. This continues until there
are no data left to be read from the slaves, or the FIFO becomes full. In either case, the
Frame Delimiter disables further input to the Frame Buffer, until the next time that the
State Generator asserts the start signal, after the contents of the Frame Buffer have all
been sent to the real-time CPU.

3.3 The State Generator

TBD
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[Note that the reset lines aren’t currently shown as being distributed to the slaves by the State
Generator, whereas they must be, to allow the State Generator to reset and halt the slave
FPGAs, while it is in the process of receiving reconfiguration information for a new scan.
Also I need to add a scan sequence number output, and route this to the Data Dispatcher.
I’ll fix this when I document the design of the State Generator]
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