The designs of the master and slave CCB FPGAs

[Document number: A48001N004, revision 2]

Martin Shepherd, California Institute of Technology

May 5, 2004

This page intentionally left blank.

Abstract

The aim of this document is to detail the design of the CCB FPGA firmware, and define its
interfaces to the rest of the CCB hardware. The design will be presented in a hierarchical
manner, starting with block diagrams of major components and their interconnections, and
ending with the VHDL code that synthesizes the lowest level components displayed, and
connects them together.

[This is still a work in progress]

Contents

1 Introduction

2 The slave FPGAs
2.1 An overview of the internals of a slave FPGA
2.1.1 Normal integration mode
21.2 Dumpmode
2.1.3 The ADC clock signal

2.1.4 External connections

3 The master FPGA
3.1 The Control Gateway
3.1.1 The internals of the Control Gateway
3.2 The Data Dispatcher o
3.2.1 The internals of the Data Dispatcher
3.3 The State Generatoro

© o W O O O

List of Figures

1.1 An overall summary of the FPGA connections 4
2.1 The top-level design of the slave FPGA 7
3.1 The top-level design of the master FPGA 11
3.2 The Control Gateway 13
3.3 The standard EPP I/O cycles 15
3.4 The EPP Handshaker 16
3.5 The EPP Address Register 17
3.6 The EPP Register Bank 18
3.7 An EPP Data Register 19
3.8 The EPP Interrupter module, 20
3.9 An Interrupt Request (IRQ) Register 22
3.10 The Data Dispatcher 25
3.11 The Frame Delimiter 26
3.12 The Slave Selector 27
3.13 The Slave Reader 29
3.14 The Frame Buffer o 30

Chapter 1

Introduction
4 ADCs 4 ADCs 4 ADCs 4 ADCs
16N16N16N16 16N16N16N16 161616816 16416N16N16
Slave Slave Slave Slave
FPGA 0 FPGA 1 FPGA 2 FPGA 3
A * A * A * A *
18 18 7 18 18

YYVYVYY

[10MHz > 14 »[USB module
| 1PPS |—> Master 16 Parallel port

| cal diodes |<—2% FPGA
Iphase switche51<—2%

Figure 1.1: An overall summary of the FPGA connections

Figure 1.1 shows the overall architecture of the FPGAs with respect to the rest of the CCB.
At the heart of the system, the Master FPGA controls 4 slave FPGAs, receives commands
from the computer’s EPP parallel port, delivers interrupts to the computer over the same
EPP parallel port, dispatches observed data to the computer over a USB link, and controls
calibration diodes and phase switches in the receiver. All of its timing signals are derived
from the Green Bank 10MHz and 1PPS reference signals.

4

Under the direction of the Master FPGA, each of the slave FPGAs continuously reads 14-bit
data samples from 4 ADCs at 10MSPS, and integrates these samples until told to deliver

them to the Master FPGA, or, when in dump mode, delivers them un-integrated to the
Master FPGA.

The following two chapters detail the internal logic and external interconnections of the Slave
and Master FPGAs, respectively.

Chapter 2

The slave FPGAs

There are 4 slave FPGAs controlled by one master FPGA. All of the slave FPGAs are
identical, so this chapter documents the internal components, and external I/O connections
of a single slave FPGA. Figure 2.1 shows the layout of a slave FPGA, showing the major logic
components within the FPGA, the internal interconnections between these components, and
all of the external I/O-pin connections to the 4 ADCs to the left, and to the master FPGA,
shown at the bottom of the diagram.

2.1 An overview of the internals of a slave FPGA

Starting from the left hand side of the diagram, the 14 bit data-signals and 1-bit overflow
signal of each of the 4 ADCs, are simultaneously latched into a corresponding 15-bit register
at the start of every FPGA 10MHz clock cycle. Simultaneously, the previous values of these
registers are read by integrator components. At the end of each integration, the outputs of
the integrators are flash loaded into a PISO, ready to be read out by the master FPGA. In
dump mode, the output of one of the 15-bit ADC inputer-registers is siphoned off, to be read
directly by the master FPGA, and the outputs of the integrators and its PISO are ignored.

2.1.1 Normal integration mode

When not in dump mode, the output of each ADC, delayed by one clock cycle by the input
register, is read into an integrator component.

The integrator component, which will be detailed shortly, either ignores the new sample,
if the drop signal from the master FPGA is asserted, or adds it to the accumulation bin
specified by the 2-bit phase signal, as received from the master FPGA.

6

reset 16-bit
-
3.3V CCB Slave FPGA load - PISO
Register Integrator 8x16 -
qls » overflow X 2
o 14
‘R ql-14 g sample +,_,—->
S
a 14 » phase >
2 »ar1a 4]0 | clock "8 1
i- P d
s £ > d15 X Tri-State > roset >
S —»> clk Driver x 16 —p start g
2 = 44—« . 16 >
Register Integrator 8x16 -
q15 P overflow X Lt
[} 14
P 3 ql-14 P sample —;;I_I—-P
2 4 2
o, 14 p phase . -
E »dl-14 14 (l) P clock lnteg |__>
o P drop
3 2 p(d15 P reset Lk
g —> clk ¢———P start -
2 sf<He- 16 -
Register] Integrator 8x16 -
ql5 P overflow X Lt
o 14
al E ql-14 | sample —,;,_I—_»
S Y 2
a 14 P phase . L
E >d1-14 14} > clock 8 ’ Ly
o P drop
3 s - d15 P reset et
S —>> clk ———P start L
9,1 % e 16 -
Register| Integrator 816 >
qlbs P overflow X Lt
— % E q]__]_4 4 P sample —/;,_I—'»
[T 2
o 14 p| phase . >
Z > d1-14 9 | clock teE]
o B P drop
<t s - d15 P reset et
g —> clk 16 ——— P start -
9:} % s -
ql g2 q3 q4 P> shftout
Decoder
clk ql-16
A enabledl-2
A A) 16
9 Tri-State
Phase (>C driver x 16
shifter
— clk-90° clk A 16 16
j—A
[[
dump phase clock drop reset start read data

CCB Master FPGA

Figure 2.1: The top-level design of the slave FPGA

7

At the end of each integration period, the master FPGA asserts the start signal for one
clock cycle. This causes the output PISO, on the right of the diagram, to flash-load the
contents of all of the 32-bit accumulator output bins of the integrators, and at the same time
causes the integrator components to zero all of their accumulators, and add the latest ADC
sample to the appropriate empty bin, unless the drop signal is asserted.

The accumulator bins are 32-bits wide, but there are only 16 pins available for clocking the
data out of the slave FPGA. Therefore a 16-bit wide PISO is used, with two entries assigned
to each accumulator bin. Since there are 4 accumulator bins per integrator, 4 integrators,
and 2 PISO entries per accumulator, the 16-bit wide PISO will be 32 entries in length.

One clock-cycle after the master FPGA asserts the start signal, the output of the PISO is
valid, and the master FPGA can then use the read input signal to clock out each new PISO
entry over the output data lines.

2.1.2 Dump mode

In dump mode, although the integrators still integrate data, the tri-state output driver,
following the PISO, is placed into a high impedance state, to enable one of the 16-bit tri-
state drivers at the outputs of the ADC input registers, to instead direct the output of a
chosen ADC, directly to the data output of the slave FPGA. In this mode, the 2-bit phase
signal is re-interpreted as the address of the ADC to be dumped, so an address decoder,
which is only enabled when the dump signal is asserted, is used to enable the chosen tri-state
buffer, according to this address.

At the end of dump mode, the master FPGA de-asserts the dump input and then, when
a new scan is ready to start, it briefly asserts the start signal to flush the contents of
the integrators, and start a new integration. At this point the PISO contains the garbage
contents flushed from the integrators, so its contents are not sent to the computer, and are
simply left in the PISO, where they are subsequently overwritten when the start signal is
again asserted at the end of the new integration.

2.1.3 The ADC clock signal

Note that the clock signal that is transmitted to the ADCs is a phase shifted version of
the FPGA clock, and is generated by one of the “Digital Clock Managers” of the parent
Spartan-3 FPGA. On the CCB mailing list a preference for a 90° phase shift was expressed.
This could be +90°, or as tentatively shown in the diagram, —90°.

The data-sheet of the AD9240 ADC says that the time taken between a rising clock edge
at the ADC clock input, and a valid new sample being available at the ADC data outputs,
ranges from between 8ns to 19ns. Thus if the ADC clock were generated by shifting the

8

FPGA clock by +90° (ie. 25ns), then this would leave a minimum of 6ns between the time
that valid data appeared at the data outputs of the ADC, and the time that the input
registers in the FPGA attempted to latch this data. This seems rather a short time, given
that the data outputs will presumably have to traverse PCB tracks, connectors, and the
input capacitance of the FPGA pins, before arriving at the inputs of the registers. Thus,
in the diagram, the alternative —90° phase-shift is indicated instead. This means that the
registers latch the data at least 56ns after they become valid, and 25ns before the ADC next
samples its inputs.

In practice, the Digital Clock Managers can be programmed to generate practically any phase
shift, so the choice of phase-shift need not be set in stone at this point, and can be changed
if testing proves that the initial choice was a bad one. This also means that the choice of
whether to use inverting or non-inverting external clock buffer-amplifiers is unimportant,
since either can be accommodated by selecting a different phase shift.

2.1.4 External connections

The FPGA 1/0 pins should be configured for 3.3V logic levels.

Provided that the DRVDD pins of the ADCs are connected to a 3.3V power-supply, then the
output data pins of the ADCs can directly drive the corresponding input pins of the FPGA.
This may not be the case if there are cables or filters in between. Unfortunately, the ADC
clock input appears to require higher CMOS levels, regardless of the voltage at the ADC
DRVDD pin. Hence the individual 3.3V to CMOS buffer amplifiers between the FPGA clock
output pins and the ADC clock input pins. If the clock output pins of the FPGA are close
together, then presumably the number of FPGA clock output pins could be reduced; as
could the number of separate buffer chips.

Note that an assumption in this design, which may not be correct, is that the interconnections
between master and slave FPGAs, and between the slave FPGAs and the analog board, will
be via daughter-board connectors, rather than via cables and EMI filters. The scenario in
mind has a central board housing the master FPGA, the USB interface and the parallel
port interface and, on the component side, connectors for 4 daughter-boards holding the
slave FPGAs, and on the other side of the board, shielded by the ground plane, 4 daughter-
boards housing the analog electronics. The connections from the ADCs to the slave FPGAs
would thus go via two levels of daughter card connectors. If a significantly different scheme is
adopted, which includes inter-board cabling and /or EMI filtering, then extra buffer amplifiers
may need to be added for the data lines, along with some means to compensate for any rise
time delays added by EMI filters.

Chapter 3

The master FPGA

Figure 3.1 shows the layout of the master FPGA, showing its major internal components,
along with their interconnections, and all of the external 1/O-pin connections to external
chips. The central brain of this design, is the State Generator component, which orchestrates
the timing and the values of all control signals that go to the other components and the slave
FPGAs. The State Generator is in turn told what to do by the computer, via the Control
Gateway component, which handles all interactions with the parallel port interface. The
Data Dispatcher component is responsible for sending integrated and dump-mode data to
the computer, via the USB interface.

3.1 The Control Gateway

The Control Gateway handles all interactions with the CCB computer’s EPP parallel port
interface. It provides an 8-bit register-based interface for the CPU to use to send commands
and configuration data to the State Generator, allows read-back of these same registers, and
lets the State Generator interrupt the CPU via the parallel port interrupt line.

In addition, the reset signal of the EPP parallel port can be used at any time by the device
driver in the CCB computer, to reset the firmware and the USB chip. This will automatically
be done whenever the device driver is newly loaded.

The implementation of an 8-bit register-based interface, for use by the computer, is simplified
by the built-in support for separate address and data cycles in standard EPP hardware. Since
both of these targets have read and write cycles, there are 4 distinct I/O cycles, which are
assigned to CCB operations as follows:

e The address write-cycle

The associated data-byte is interpreted as the address of one of the registers in the

10

25-pin parallel port connector

Slave | | Slave | | Slave | | Slave
FPGA | |FPGA | | FPGA| |FPGA 3.3v
0 1 2 3
JYY JVY JVY JVY
71 (16 {7 (16 7| (16 (7| (16 .Data veedo gnd
Dispatcher
data0..3 extvec
4E } I: portvce
} read0..3
=
§ » clock 8 ﬁ
= - reset usb_data - d0-d7 %
7 g P dump usb_reset P reset D:
§ 2> start usb_txe @ 5
% W dslave b rxf [« rxf A
w < fsize usb_rd > rd
—32 | time usb_wr > wr
State 32, b flush p- snd/wup
10MHz Generator or | Sedno usb_tlus
clock phase | cal 5y
'L —»{ gbt_clock
3.3V start_acq Control Co-way |
drop Gateway buffezs
1PPS clock | clock
L reset |4 reset epp_data] 8 8 o
4V dump N
13.0Q Sta(ﬁ:: 2 tx / 7% > -
N
| 1PPS fsize [\16 5y z?
37.40 time 32 8
1-wa
32 y
seqno 5 L buffers
cal
Diffi tial . int; > =
Diterentil i g R
int_intr p| int_intr epp_wait >—!> =
:<]~—< phs_sw_0 sec_intr — P~ sec_intr eppreset [<|I 5
n hs sw 1 regs0..n |- regsO.m P
_<]~—< phs_sw_ note0..n |l€2reg note0..n epp_write [« <~ —
:<]~—< cal_diode_0 epp_data_strobe | <‘, S
< He{cal diode_1 cpp_addr_strobe (¢ <=
T 3.3V 5V
?-3_\7 logic logic
ogic

Figure 3.1: The top-level design of the master FPGA

11

FPGA. Subsequent data-read and data-write cycles read from and write to the ad-
dressed register.

e The data write-cycle

The associated data-byte is copied into the register that was previously indicated during
the last address write.

e The data read-cycle

The returned data-byte is the value of the register that was previously indicated during
the last address write.

e The address read-cycle

When the CPU initiates an address-read cycle, the FPGA responds by returning the
bit-mask of all FPGA event-sources that have requested interrupts since the last time
that the computer executed an address-read cycle.

There are only two periods when data are sent to the master FPGA by the computer.

1. When starting a new scan, a write to the control register is used to prepare the State
Generator for reconfiguration. This is be followed by multiple EPP write-cycles to send
the configuration data of the new scan. The last such write is to the register which
instructs the State Generator to activate the new scan.

Note that since the FPGA does nothing with the configuration data that it is sent, until
it is told to start the next scan, it is safe to send the values of multi-byte configuration
registers, one byte at a time.

2. During a scan, the CPU sends the FPGA a single byte of integration-specific config-
uration data whenever the FPGA generates a configuration interrupt. At the start
of a scan, this happens repeatedly, until the FIFO that queues these bytes fills up.
Thereafter, integration-configuration interrupts are sent at the end of each integration,
as the removal of one integration-configuration byte from the FIFO, makes room for
another.

Since between scans, only the integration-configuration register is written to, the device
driver need not keep sending the address of the integration-configuration register before
each data write. Instead it sends it once, just after the command byte that activates
a new scarn.

Thus, on average, each such interrupt will cause an EPP address-read to get the in-
terrupt mask, plus one EPP write to send the FPGA the configuration of the next
un-configured integration. Once the configuration FIFO is full, this will happen, on
average once per integration.

12

in a bank of 8-bit registers.

3.1.1 The internals of the Control Gateway

When configuration data and commands are received from the computer, they are recorded
The values stored in this bank of registers are included in
the outputs of the Control Gateway, and are thus visible to the rest of the CCB, where
the individual registers are interpreted, either as commands to be executed on receipt, or as
configuration data. The registers are updated synchronously with the FPGA clock, followed,
one cycle later, by a corresponding output flag which indicates, for one clock cycle, when a
new value for that register has been received. The bytes in the FPP Register Bank can also
be read-back by the CPU, via EPP data-reads.

p epp_intr

«» epp_data

L tX/TX

P epp_wait
<4— epp_write

-4— epp_data_strobe

Control Gateway EPP Interrupter
enf _intr-p enf intr
int_intr int_intr intr
sec_intr sec_intr K
mas
holdoff - 8 holdoff
- » send_mask
EPP Register
clock reset
Bank P
nreg x 8 data < 8 8
regs <& regsO..n recv|«
nreg send -
note & note0..n addr e 8
clock reset Y
py |
_ :
FEPP Address Dﬁ
Register 3
data =
addr 784 EPP Handshaker
store | L{send_addr wait
clock reset ——{recv_data write
send_data data_strobe
clock 9 recv_addr addr_strobe
clock reset
]
reset - L o<l—

-4— epp_addr_strobe

— epp_reset

Figure 3.2: The Control Gateway

13

Since only one register can be read from or written to by the CPU in a single EPP transaction,
a way is needed for the CPU to specify which register is to be the current I/O target. To
do this, the CPU uses an EPP address-write transaction to send the 8-bit address of the
register of interest. On receiving such an address, the Control Gateway stores it in the EPP

Address Register whose output is used to route subsequent EPP data transactions to the
specified register in the EPP Register Bank.

The EPP Interrupter allows multiple interrupt sources in the FPGA to share the single
parallel-port interrupt line. When the CPU receives a parallel-port interrupt, it responds
by performing an EPP address-read, which both acknowledges the interrupt, and asks the
FPGA which FPGA event-sources requested the interrupt. The EPP Interrupter, which is
told about the address-read by the EPP Handshaker, responds by sending the CPU an 8-bit
interrupt mask, whose individual bits indicate which event-sources have requested interrupts
since the last time that the mask was read by the CPU.

The EPP Interrupter has a holdoff input, whose value is the minimum number of clock
cycles to wait after sending one interrupt, before sending another. This both prevents inter-
rupts from being sent too frequently, and sets the rate at which unacknowledged interrupts
are to be resent. Note that there is no danger that a resent interrupt will be interpreted
by the CPU as indicating two events in the FPGA, since it is the contents of the interrupt
mask, rather than the number of interrupts received, that matters, and this is cleared as it
is read.

To avoid a tug-of-war with the CPU, the FPGA only drives the data lines when explicitly
requested, as indicated by either of the send_data or send_addr outputs of the EPP Hand-
shaker being asserted. Thus the external data line transceivers are configured to passively
receive data from the computer, except when either of the former signals are asserted.

The EPP Handshaker

The EPP Handshaker module, as depicted in figure 3.4, is responsible for responding to the
standard EPP handshaking signals for all single-byte EPP transfers.

The timings of the two standard EPP 1/O cycles are shown in figure 3.3. Note that the
strobe signal represents either the addr_strobe or data strobe signals, depending on
whether an address-write or data-write cycle is in progress, and that the write, data_strobe,
addr_strobe, and wait EPP signals are all active-low. The write and strobe signals are
generated by the computer, while the wait signal is generated by the FPGA. The 8-bit data
signal is generated by the computer when performing an EPP write-cycle, and by the FPGA
when performing an EPP read-cycle.

At the start of each FPGA clock-cycle, the value of the wait signal is derived from the
previous value of this signal, the value of the write signal, and the value of the appropriate
strobe signal, according to the truth table shown to the right of figure 3.4. The circuit within
the dashed box implements this truth-table.

The data_strobe and addr_strobe inputs, to the circuit in the dashed-box, are pre-conditioned
by latches 1 and 2, which both re-time them to rise and fall in sync with the FPGA clock,

14

An EPP write-cycle An EPP read-cycle

write S\ / write M
strobe \ / strobe \ /
Wwait . \ wait oo

data A data

CPU writes dataE FPGA writes dataE :
FPGA reads data: CPU reads data:

Figure 3.3: The standard EPP I/O cycles

and invert them. All of the logic paths that follow them have a full clock cycle to set-
tle, before being latched by latches 3-7. In particular, when a rising edge of either of the
EPP data_strobeor addr_strobesignals violates the setup and hold times of latches 1 and
2, the corresponding latch could go into a metastable state, so this extra clock-cycle for
the metastable state to work itself out, should greatly increase the reliability of the circuit.
Indeed, apparently the conventional recommendation for interfacing asynchronous logic to
clocked logic is to use two chained latches like this. The drawback of this is that it adds a
clock cycle to the handshaking delay, and thus reduces the possible throughput. However,
since the CCB won’t be streaming large amounts of data through the parallel port, this
shouldn’t be important. If it were a problem, the simplest solution would be to increase
the FPGA clock frequency to make one FPGA clock cycle less than half the duration of the
standard EPP 8MHz clock period, although this would of course involve a trade off, since
the probability of a metastable state persisting for the shorter period of the higher frequency
clock, would then be higher.

The bottom line is that the rising edge of the output wait signal follows the falling edge of the
pertinent strobe signal by between 1 and 2 FPGA 10MHz clock cycles, which corresponds
to 0.8 and 1.6 EPP 8MHz clock cycles. Thus most of the time, the standard 4-cycle EPP
I/0O transaction will be lengthened to 5 8MHz cycles, and thus last 0.625us instead of 0.5us.

Note that the wait and write signals aren’t pre-latched, like the strobesignals, since the
EPP protocol assures that they will have stabilized before the pertinent strobe signal is
driven low, and remain stable until after the wait line is next driven high.

While it drives the EPP wait signal high, the FPP Handshaker also asserts one of the
send_data, recv_data, send_addr, and recv_addr outputs, both to indicate what type of

15

data_strobe

EPPHandshaker

latch3

.

d q
—> clk
clear

Pprecv_data

1
)

latchl latch4

addr_strobe -

?
|

d
> clk a

Ppsend_data

d q
> clk -
’, clelar ar—1

clear
|

latch2|

latch5

Ul ¢

wait -

?
|

d d 4
q > clk
P clk - clear

precv_addr

clelar a9

I

d

latch6

v

> clk
clear

Pp-send_addr

1
I
I
I
I
I
I
1

write 9

w altnew

clea

e | write| strobe
. 0 0
O | || |
1

7/

r

e o o n r e e e— e e e e w

0 1

d q I
1> clk I 1 0
| 1 1

SR

waitgq

A

clk reset

Figure 3.4: The EPP Handshaker

16

I/O transaction has been requested, and to signal the period during which the data signal
should be valid. The send data and send_addr outputs indicate when the FPGA should
drive a data byte or the interrupt mask onto the shared data lines, respectively, and the
recv_data and recv_addr signals respectively indicate when a data or address byte should
be read from the data lines. Data are expected to be latched to or from the data lines on
the rising edges of these signals, in accord with the diagram of the standard EPP I/0 cycles.
In the case of FPGA data-read and address-read transactions, the corresponding source of
the requested data-byte is expected to drive the data lines while the associated send_data
or send_addr signal is asserted.

The EPP address register

EPP Address
Register

Latch
data—p d q p addr

store —» > clk
clear

A
reset

Figure 3.5: The EPP Address Register

The EPP Address Register, as shown in figure 3.5, holds the address of the data register that
should be written to, or read from, by subsequent EPP data-write and data-read cycles. It
is implemented as a simple octal latch which latches in the contents of the data lines on
the rising edge of the store input signal. Note that the store input signal is driven by the
recv_addr output of the EPP Handshaker. Thus the data-byte of each EPP address-write
transaction ends up in this register. The addr output is the index of the addressed data
register, and is thus connected to the addr input of the EPP Register Bank module.

The EPP Register Bank

The EPP Register Bank, as shown in figure 3.6, contains the registers that are used to record
and provide read-back of configuration and command opcodes sent by the CPU. The addr
input, which comes from the EPP Address Register module, selects which register should
latch data from the data lines when the recv input goes high, or which register should drive
its value onto the data lines, while the send signal is high. Register selection is implemented

17

EPP Register Bank
1 of n decoder
addr—p addr
qO q]_ o o o qn
data «» 8 8
send —p»
recv —p»
EPP data FPdata ... FPPdat4
reg 0 reg 1 regn
8_ select 8_ select 8_ select
4 data 8 L4 data 8 A data 8
recall regr recall regr7 recall Teg
newr new new
store store store
clk reset clk reset clk reset
— —] T t newn
8 régl
newl
8 reg(
new0

X

clock reset

Figure 3.6: The EPP Register Bank

18

via an conventional address decoder, which asserts its ¢'th q output when the address has the
value 7. Although the addr input provides an 8-bit address, which allows up to 256 registers;
in practice much fewer registers will be needed, so a smaller decoder that ignores some of
the most significant bits, can be used.

The individual data registers are implemented as EPP Data Register modules, implemented
as shown in figure 3.7. Since only one register at a time can be addressed by EPP data-read
and data-write cycles, each data register ignores its store and recall signal inputs except
when its select input is asserted. When both this and the recall signal are high, the
embedded octal register drives its current value onto the data lines, via a tri-state buffer.
Alternatively, when the select signal is asserted, and the store input signal goes high, it
does 2 things. First the rising edge of this signal causes the byte on the data lines to be
latched into the embedded register. Then one clock cycle later, after the register has settled,
latches 2 and 3 generate a single pulse, one clock-cycle in length at the note output. Thus the
note output of each EPP data register is used to signal other parts of the firmware when it has
been updated. For example, the FIFO which queues integration-specific configuration data
will use this to shift each new value of the configuration register into the FIFO. Similarly
registers that are to be interpreted as command opcodes will use this signal to trigger a
command, without the opcode value within the register needing to change.

EPP Data Register
‘4_<‘ 8
data < N Latchl
> 8 d q 8 H- reg
recall — > clk
clear
select —p»
{2 =
store —»—___/
Latch2 Latch3
Hd « D d qf—f» note
—>clk q —> clk
clear clear
| :
clock reset

Figure 3.7: An EPP Data Register

The EPP Interrupter

The implementation of the EPP Interrupter module is shown in figure 3.8.

EPP Interrupter

IRQreg0
cnf_intr intr irq 0-~—_8 ‘
ack mask

—p>clk
clear

|
T —
IRQregl
int_intr intr irq
s ack maskH

o—|>clk

clear
|

¢ e

IRQ reg2
sec_intr intr irq—
¢ ack mask Hold-off

o—[>clk counter
send_mask clear

P mask

latch5| [latch6
d qr—d qr9— P intr
> clk ’7> clk

clear clear

-

3 |

load borrow

holdoff & wmsp 13
5 d q —“— N/C
11111 1SB

¢ > down

clear

clock reset

Figure 3.8: The EPP Interrupter module

As explained shortly, the CCB FPGA has three sources of interrupt-worthy events, all of
which share the single parallel-port interrupt line (intr), under the auspices of the EPP
Interrupter module. As such, the receipt of a parallel-port interrupt by the computer does
not necessarily imply the occurrence of any particular new event in the FPGA. What it does
tell the computer is that it should perform an EPP address-read to find out which events
have occurred since the last time that it performed such a read. The resulting loose asso-
ciation between between individual events and parallel-port interrupts, reduces the number
of interrupts that the CPU has to handle, and allows a repeat interrupt to be sent if the
computer appears to have missed the previous one, without any danger of the computer

20

incorrectly believing that a repeated interrupt represents a new event. Similarly, the only
harm that spurious interrupts can do is bog-down the CPU, since the bit-mask of events
returned by the subsequent EPP address-read, after a bogus interrupt, will indicate that
nothing has really happened.

Interrupts are sent to the CPU at most once every holdoff clock cycles. In particular, once
any interrupt source has requested an interrupt, a new CPU interrupt is sent every holdoff
clock cycles, until the computer performs an EPP address-read to get the bit-mask of which
event sources have requested interrupts.

When a particular event-source in the FPGA wishes to notify the computer of a new event,
it asserts the associated one of the cnf _intr, int_intr or sec_intr interrupt-request inputs
of the EPP Interrupter for at least one clock cycle. On the following clock cycle, the corre-
sponding IRQ (interrupt-request) register becomes asserted, and remains asserted until the
computer next performs an EPP address-read to query which event-sources have requested
interrupts.

The EPP Interrupter examines the irq outputs of the IRQ registers at the start of each
clock cycle, and if any of them are asserted, and the holdoff counter isn’t still counting down
from the previously sent interrupt, it raises the parallel-port intr signal to interrupt the
CPU, and holds this signal high for two FPGA clock cycle (ie. 1.6 EPP 8MHz clock cycles).
Simultaneously, it reloads the holdoff down-counter with the number of clock cycles that it
should hold-off the generation of the next interrupt.

When the computer responds to the receipt of an interrupt, by performing an EPP address-
read, the rising edge of the send_mask input latches the states of the IRQ) registers to their
respective mask outputs, which are then driven onto the parallel-port data lines via the
tri-state buffered mask output of the EPP Interrupter. One clock cycle later, all of the IRQ
registers whose latched mask outputs are asserted, are de-asserted, ready to register a new
event. Note that the mask outputs remain unchanged when the register is de-asserted, since
they must continue to drive the data lines until the send mask input goes low.

Note that if an event-source requests a new interrupt while its IRQ register is still asserted
from a previous unacknowledged request, the new request is lost. A way to prevent such
losses would be to implement the IRQ registers using up/down counters. New interrupt
requests would increment these counters, and acknowledgements would decrement them.
The first iteration of this design, did just that. However, interrupts generally represent
events that require a response while the interrupting event is still relevant, so queuing out-
dated interrupts is pointless. Furthermore, anytime that EPP interrupts were disabled, the
CCB would quickly queue hundreds of unacknowledged events, which would then keep the
CPU busy for a while acknowledging stale events, after interrupts were re-enabled. For these
reasons, the idea of using up/down counters was abandoned, and it was decided that it made
more sense to simply design the event-sources and the device driver around a limitation of
one queued event per interrupt source, per EPP address-read.

Figure 3.9, shows the internals of a single IRQ register.

21

IRQ Register

ack
latchl latch2 latch3
—1d q d aq— d «q » mask
—>clk @ —>clk > clk
clelar cleiar clelar
intr 4 |latch4 latch5 latch6 |
—Hd q d q d qpe=1»irq
—>clk § > clk : —>ck | 1
clelar clelar I clelar |

-

clk reset

Figure 3.9: An Interrupt Request (IRQ) Register

The part of the circuit in the bottom right of the diagram, enclosed in a dashed box, is
the IRQ register itself. It takes interrupt requests from the output of latch 5, and interrupt
acknowledgements from the output of latch 2. An asserted interrupt-request input causes the
irq output to go high, and thereafter stay high until the interrupt acknowledgement input is
next asserted. If both a new interrupt request and an acknowledgement signal arrive on the
same clock cycle, the new interrupt request takes precedence, and asserts the irq output.
The value of the irq output is latched to the mask output, on the rising edge of the ack
signal, ready to be driven onto one of the EPP data lines by a tri-state buffer in the parent
EPP Interrupter.

The purpose of latches 4 and 5 is to generate a single pulse, one clock cycle in length, each
time that the intr input goes high, regardless of how long the input signal remains high.
This is needed to avoid a race condition with the acknowledgement signal. The rising edge
of the single-cycle pulse actually occurs one clock cycle after the intr signal first goes high.

Similarly, the purpose of latches 1 and 2, is to convert a potentially multi-cycle pulse at
the ack input into a single-cycle pulse at the acknowledgement input of the dashed circuit.
In this case however, the one cycle delay in the initiation of this pulse, and an extra input
to the AND gate, are exploited to ensure that the delayed acknowledgement input to the
dashed circuit is not generated at all, unless the interrupt mask bit that was latched to the
mask output, one clock cycle earlier, is high. In other words the IRQ register isn’t actively
de-asserted by an acknowledgement signal, unless it was asserted when its value was reported

22

to the computer. This guarantees that the mask output can be trusted to always report if
at least one interrupt request occurred since the last time that the mask was latched. If,
instead, the IRQ register were de-asserted without regard for whether an interrupt event had
been reported to the computer, then any interrupt request that arrived at the d input of
latch 6, on the same clock edge that latched the corresponding q output into latch 3, would
get discarded by the ack signal one cycle later, and the event would never be reported to
the computer.

The three interrupt sources that are envisaged at this point, are the following:

e cnf_intr - Integration configuration interrupts.

Before the start of each new integration, the State Generator needs to know the de-
sired on/off states of the cal-diodes. In principle this could be sent one integration
in advance, from an end-of-integration interrupt handler. That was the original plan.
However, to soften the real-time requirements placed on the device driver in the CCB
embedded computer, and thereby make the CCB insensitive to occasional transient
anomalies in Linux’s interrupt latency, the current plan is to instead implement a
FIFO containing the configurations of many integrations in advance, instead of just
one. Keeping this FIFO filled is the job of the cnf _intr interrupt. At the start of a
scan, to fill the FIFO, multiple cnf _intr interrupts are generated, each one telling the
computer to send the configuration of the next un-configured integration. Thereafter
at the start of each new integration, one entry is removed from the FIFO, and a new
entry is requested by sending another cnf_intr interrupt.

The rapid-fire cnf_intr interrupts at the start of a scan are rate-limited in two ways.
First, a new cnf_intr input-signal is never raised by the State Generator until the
CPU responds to the previous one by sending a new cal-diode configuration entry.
Secondly, the holdoff timer of the KPP Interrupter sets a hard limit on the parallel-
port interrupt rate, regardless of how quickly the CPU responds.

e int_intr - Integration-done interrupts.

Integration-done interrupts are generated when one integration ends and another starts.
If a new integration starts before the interrupt from the start of the previous integra-
tion has been acknowledged by the computer, the new interrupt request is simply
discarded, but the previous integration request continues to generate retry interrupts
at intervals controlled by the holdoff timer. Thus the CCB device driver should not
count integration interrupts to determine how many integrations have been completed
at a given time, and nor should it use this interrupt for anything that absolutely has to
be performed within a small time frame following the boundary between 2 integrations.

As mentioned in the discussion of the cnf_intr input, originally integration-done in-
terrupts were needed for sending cal-diode configurations one integration at a time. It
isn’t clear yet whether this event will be useful for anything else in the device driver,

23

so for the moment, it is included here mostly as a placeholder, and may end up being
removed.

e sec_intr - 1 second interrupts.

A sec_intr interrupt is requested once per second, at the rising edge of the second
FPGA clock cycle that follows the rising edge of the pulse of the external 1PPS signal
(to avoid metastable latch states). Like the integration interrupt, if a previous 1-second
interrupt hasn’t been acknowledged by the time that a new one is to be generated, the
new one is simply ignored, while the EPP interrupter continues to retry sending the
original. Given the length of time between these interrupts, this should only happen
when the CCB device driver isn’t loaded, or if either the parallel cable or the computer
are damaged.

By default, at boot time, EPP interrupts are disabled, and a write to the parallel-port
configuration register is needed to enable them. While they are disabled, signals on the intr
interrupt line are simply ignored by the computer. Thus the FPGA doesn’t redundantly
provide its own way to enable and disable the generation of interrupt signals on the intr
line. Note that the resending of unacknowledged interrupts every holdoff clock-cycles,
ensures that interrupts that are missed while the parallel-port has interrupts disabled, get
resent and acknowledged as soon as interrupts become enabled.

3.2 The Data Dispatcher

At the end of each integration period, and at the start of dump mode, the Data Dispatcher
component reads integrated or dump-mode data from the slave FPGAs into a large FIFO,
then streams the contents of this FIFO, preceded by a header, to the computer, via the USB
link. All communications over the USB bus are directed from the FPGA to the computer.
Thus, although the read (rd) and read-enable (rxf) pins of the USB interface are shown as
inputs to the Data Dispatcher, there are no plans to use them at the moment.

Note the use of the DLP-USB245M module. This is a tiny PCB module containing a 6MHz
crystal, a surface-mount FT245BM USB1.1 chip, a USB connector and all the interconnec-
tions needed between these parts. The PCB is just 1.5 x 0.7 inches in size, and the USB
connector sticks out a further third of an inch from one end. The module can be soldered
onto the CCB PCB, via 24 dual in-line pins. Its data-sheet can be downloaded from:

http://www.dlpdesign.com/usb/dlp-usb245m12. pdf

The two of these modules that I bought for testing the FT245BM, I got from a company
called Saelig (www.saelig.com), which is an official US distributor for the FT245BM. The

24

modules arrived overnight. Since then, I have noticed that Mouser Electronics carries them
as well. Their catalog number at Mouser is 626-DLP-USB245M, and they cost $25.

3.2.1 The internals of the Data Dispatcher

Data Dispatcher Frame
Delimiter
» end frame
begin
(\ > clk Y
start— ' P
clock ¢ N >
Slave
selector AY i v
clock empty
- start Yy
fsize 162 | fsize Frame 16->8
dlsave—» dlsave dave —» buffer PISO
dump —+» dump full empty [
2 »>new empty
» dump —H» usb_flush
time —p» 32 - time Yy Yy
seqno —» 16 > seqno
1 2 >
ca cal e usb_txe
Slave reader
dataQ —» 16 data0 slave [«
o |16
gzt:; : 16 3a:a; so < - > s1 s0 Je—e—p->>load so < — usb_write
> atal
»| 16
data3 data3 a 16 »ld q18- sl q q 8 » usb_data
read(< read0
read]l readl
read2 read2
read3 read3

Figure 3.10: The Data Dispatcher

Figure 3.10 shows the building blocks of the Data Dispatcher, and how they are intercon-
nected. All data available from one slave at a time, are read by the Slave Reader and passed
on to the Frame Buffer. The current slave to read from, is selected by the Slave Selector,
which cycles through the slaves in reverse numerical order, when reading out integrated
data, or continually reads from the slave specified by the dslave input signal, when in dump
mode. The frame output signal of the Frame Delimiter controls the packaging of output

25

data frames within the Frame Buffer. When the frame signal goes high, a new output data
frame is initialized, and data from the slaves start to be transfered to the Frame Buffer.
When all data from the slaves have been transfered, or the frame-buffer becomes full, the
frame signal goes low, to terminate the frame. The frame signal doesn’t go high again until
the next rising edge of the start signal from the start_snd output of the State Generator,
and even then, it only goes high if the previous contents of the Frame Buffer have been
completely transfered to the CPU over the USB link. These measures prevent a new frame
from trampling on an incompletely sent frame, and prevent temporary buffer-full conditions,
when in dump mode, from creating unpredictable sampling gaps within a frame.

The Frame Buffer contains a large FIFO for the slave data, plus a small PISO in which
the frame header is assembled. The frame header, which is flash loaded into the PISO, on
the rising edge of the frame signal, consists of a time-stamp, a scan sequence number, the
states of the cal-diodes during the just-completed integration, frame-start and dump-mode
indicators.

Once a new frame has been started, the contents of the Frame Buffer are clocked out, 16-bits
at a time, starting with the frame header in the PISO, and followed by the slave data from
the FIFO. Each chunk is loaded into a 2 entry, 8-bit wide PISO, such that 8-bits at a time
then can be clocked out to the 8-bit FIFO in the USB chip, whenever the USB chip has
space. When both the Frame Buffer and the latter 8-bit PISO have been emptied of all
data, the usb_flush signal is asserted, to tell the USB chip to send all remaining data to
the CPU, as soon as possible, without waiting for enough data to precisely fill up the final
USB block.

The internals of the Frame Delimiter

The implementation of the Frame Delimiter is shown in figure 3.11.

Frame Delimiter

_ Latch
begin - d q > frame

end P

clk > clk

Figure 3.11: The Frame Delimiter

When the end input signal is asserted at the start of a clock cycle, the frame output becomes

26

de-asserted, regardless of the state of the begin input signal. This terminates the assembly
of an output frame. The frame signal does not go high again, until the start of a clock cycle
when the begin signal is newly asserted, after the end signal has been de-asserted.

This means that a new frame will not begin if the begin signal is asserted while the end
signal is still asserted, and that if the end signal becomes asserted during a frame, the frame
is considered to be complete, regardless of the state of the begin input.

The internals of the Slave Selector

The implementation of the Slave Selector is shown in figure 3.12.

Slave Selector
16-bit down
counter
clock > down borrow p empty
start» preset bits 7-15 v
fsize p|L8] pdata count [x16/ bits 5-6
\bits 0-4 N/C
MUX1
2
L—pd1 0
q P slave
dslave # 2 - dO
addr
dump 4

Figure 3.12: The Slave Selector

At the start of each clock cycle the Slave Selector tells the Slave Reader which slave to read
the next 16-bit sample from, as well as indicating when readout should stop. In particular, in
normal integration mode, it arranges that all data from slave 3 be read out first, followed by
all data from slave 2, then all data from slave 1 and finally all data from slave 0. Alternatively,
in dump mode, it indicates that data should only be read from the slave that is indicated by
its dslave input. In both of these cases, once a total of fsize samples have been read-out,
since the start of the frame, Slave Selector asserts its empty output signal, to indicate that
readout should stop. In normal integration mode, the State Generator thus sets the fsize

27

input such that all of the slave PISOs are emptied before the Slave Selector asserts the empty
signal, whereas in dump mode, it sets the fsize input according to the currently configured
size of a dump-mode frame.

As evident in the diagram, the major functionality of the Slave Selector is implemented
using a down-counter. This is preset to the value of the fsize input at the start of a new
frame, when the start input is asserted. One clock-cycle later the output of the counter
has settled to this value, and the Data Dispatcher reads the first sample from the specified
slave, and the down-counter decrements by one, before the next sample is read on the next
clock-cycle. The actual number of samples that get read before the asserted borrow output
prevents further readout, is fsize + 1. Therefore the value of fsize actually represents one
less than the number of samples that are to be read from the slaves.

Whereas in dump mode, only the borrow output of the counter is used by the Slave Selector,
in normal integration mode, bits 5 and 6 of the output count (counting bits from 0), are also
used to specify the slave that is to be read from. These are the two most significant bits of
the count, given that in normal integration mode, the State Generator sets fsize to 127 (ie.
32PISO entries x 4slaves — 1). Thus for the first 32 clock cycles, the two msb’s of the count
set the slave output to 3, then for the next 32 cock cycles they set slave to 2, then 1, then
finally 0. In this way 32 samples are read from each slave, one slave at a time, starting with
slave 3, and ending with slave 0.

Currently it isn’t known how much space can be allocated for the FIFO in the Frame Buffer,
so the maximum frame size is similarly unknown. As such, the fsize input has been ar-
bitrarily assigned 16 bits, for now, which corresponds to a maximum size of a dump-mode
frame of 65536 contiguous ADC samples (6.5ms). The actual size of the £size input can be
better tuned to the size of the FIFO obtained, when the design is complete, but in practice
there is no harm in it being bigger than the available space in the FIFO, since the Data
Dispatcher keeps an eye on the state of the Frame Buffer and terminates the frame early, as
soon as the Frame Buffer becomes full.

The internals of the Slave Reader

As depicted in figure 3.13, the Slave Reader uses its slave input signal to connect the data
and read signals of the correspondingly numbered slave FPGA, to the so input and q output
signals of the Slave Reader. Thus a read-strobe on the so input of the Slave Reader, is routed
through de-multiplexer, DMUXI1, to the read output going to the selected slave, while the
data that this returns from the selected slave is routed through the multiplexer, MUX1, to
the q output of the Slave Reader.

28

Slave Reader

read(-

read] <

read?2 &

read3 <t

data0

16

DMUX1

q0
ql
q2
q3

addr

- slave

d - SO

16

datal-»
data2

16

16

data3

MUX1

do

d1
d2

d3

addr

b

Figure 3.13: The Slave Reader

29

The internals of the Frame Buffer

As shown in figure 3.14, the Frame Buffer has two major parts, a 16-bit wide PISO containing
a frame header, and a large 16-bit wide FIFO containing integrated or dump-mode data.
The outputs of the Frame Buffer simulate the output of a virtual 16-bit wide FIFO, formed
from the serialized concatenation of the contents of these two parts, with the header coming
out first, followed by the data.

Frame Buffer
p empty
Large
16-bit FIFO
full <& full empty DMUX1
si > si S0 < ql d 4—= so
dpl 16 |4 o —16 90 qdr
16-bit
PISO
new - >load empty
16 d4
time 52 16 MUX1
seqno d3 soq
01% ig az ig al 16
9 dl q - dO » q
cal B 1 16, | 40 addrd
dump 1 *

Figure 3.14: The Frame Buffer

The glue-logic with which the Data Dispatcher embeds the Frame Buffer, ensures that a new
frame can not be started unless the Frame Buffer is empty. Thus whenever a new frame is
successfully started, it is guaranteed that both the data FIFO and the header PISO of the
Frame Buffer are empty. The start of a new frame is signaled by a rising edge on the new
input, which is externally connected to the frame output of the Frame Delimiter in the Data
Dispatcher.

At the start of a new frame, the rising edge of the new input-signal causes the header PISO
to load the contents of the header, as derived from input signals received from the State
Generator. The header currently consists of 5 16-bit words, which are used as follows.

30

e The first of the 16-bit header words identifies the type of frame that is being packaged,
and since it has a value that doesn’t look like a data value, the CPU can use it as the
indication of the start of a new frame, in case other frame separation measures don’t
work.

A normal data value will either be zero, in the case of a missing ADC board, or be a
significantly non-zero number, in the presence of sampled noise, so a small non-zero
16-bit number, is a good choice for something that should not look like a data sample.

Thus to ensure that the first header-word not look like a data sample, its 16-bit value
is always a small non-zero number, having either the value 1 or the value 3. A value
of 1 signifies that the frame is a normal integration frame, whereas a value of 3 means
that it is a dump-mode frame.

e The second of the header words is a 16-bit word indicating conditions that pertained
while the data were being taken. Currently this consists of two bits, specifying the
states of the cal-diode switches.

e The third of the header words is a 16-bit scan sequence number. This reflects the
value of a counter in the State Generator, which is reset to zero, whenever the FPGA
firmware is reset, and incremented by 1 whenever a parallel port command to start
a scan or intra-scan is received. The CPU will use this both to watch for the first
integration of a newly requested scan, and potentially to watch for missing scans.

e The 4th and 5th words are the least and most significant 16 bits of a 32-bit time-
stamp. This is the value of a counter in the State Generator which is reset to zero at
the start of each new scan, and incremented by 1 every clock cycle thereafter. Thus
the time-stamp measures the time elapsed since the start of the second on which the
last scan started, has a resolution of 100ns, and wraps around every 430 seconds.

On the real-time computer, the sum of the absolute time of the 1PPS edge on which the
scan was started, and the above relative time-stamp (after accounting for wraparounds),
will form the high-resolution time-stamp that is sent with the data, to the manager.

On the same clock edge during which the new signal goes high, data become available from
the slaves. These data are synchronously clocked into the FIFO, 16-bits at a time, by the
Data Dispatcher, using the si, shift-in, input and the d, data inputs. This continues until
there are no data left to be read from the slaves, or the FIFO becomes full. In either case,
the Frame Delimiter then disables further input to the Frame Buffer, until the next time
that the State Generator asserts the start signal, after the contents of the Frame Buffer
have all been sent to the real-time CPU.

3.3 The State Generator

still TBD

31

