
The designs of the master and slave CCB FPGAs

[Document number: A48001N004, revision 8]

Martin Shepherd, California Institute of Technology

January 20, 2005

This page intentionally left blank.

2

Abstract

The aim of this document is to detail the design of the CCB FPGA firmware, and define its
interfaces to the rest of the CCB hardware. The design will be presented in a hierarchical
manner, starting with block diagrams of major components and their interconnections, and
ending with low level generic components, such as AND gates and latches.

Contents

1 Introduction 6

2 The slave FPGAs 8

2.1 An overview of the internals of a slave FPGA 8

2.1.1 The Heartbeat Generator . 11

2.1.2 The Signal Injector . 11

2.1.3 The Sampler component . 13

2.1.4 The Integrator component . 14

2.1.5 The Accumulator component . 14

3 The master FPGA 18

3.1 The Control Gateway . 18

3.1.1 The internals of the Control Gateway 21

3.2 The Data Dispatcher . 32

3.2.1 The internals of the Data Dispatcher 32

3.3 The State Generator . 46

3.3.1 The Scan Initiator . 47

3.3.2 The Receiver Controller . 50

3.3.3 The Slave Controller . 62

3.3.4 The Dispatch Controller . 63

3.3.5 The 1PPS Gateway . 65

3.3.6 Clock Conditioner . 66

3.4 Custom generic components . 69

3.4.1 The ELatch component . 69

3.4.2 The EReg component . 70

3.4.3 The CCB PISO component . 70

2

3.4.4 The Event Counter component . 72

3.4.5 The Metronome component . 74

A CCB control and configuration registers 78

3

List of Figures

1.1 An overall summary of the FPGA connections 6

2.1 The top-level design of the slave FPGA . 9

2.2 The Heartbeat Generator component . 11

2.3 The Signal Injector component . 12

2.4 The Sampler component . 13

2.5 The Integrator component . 15

2.6 The Accumulator component . 16

3.1 The top-level design of the master FPGA . 19

3.2 The Control Gateway . 21

3.3 The standard EPP I/O cycles . 23

3.4 The EPP Handshaker . 23

3.5 The EPP Address Register . 25

3.6 The EPP Register Bank . 26

3.7 An EPP Data Register . 27

3.8 The EPP Interrupter module . 28

3.9 An Interrupt Request (IRQ) Register . 30

3.10 The Data Dispatcher . 33

3.11 The Slave Reader . 35

3.12 A timing diagram of the Slave Reader . 36

3.13 The Frame Buffer . 37

3.14 The Frame Header . 38

3.15 The Byte Streamer . 40

3.16 A timing diagram of the Byte Streamer . 42

3.17 The Slave Detector . 43

3.18 The Heartbeat Detector . 44

4

3.19 The State Generator . 45

3.20 The Scan Initiator . 49

3.21 The Receiver Controller . 51

3.22 The Scan Sequencer . 53

3.23 The Cal Controller . 56

3.24 The Cal Switcher . 58

3.25 The Phase Sequencer . 61

3.26 The Slave Controller . 62

3.27 The Dispatch Controller . 64

3.28 The 1PPS Gateway . 66

3.29 The Clock Conditioner . 67

3.30 A D-type latch with a synchronous input-enable input 70

3.31 A register with a synchronous input-enable input 71

3.32 One node of a CCB PISO component . 71

3.33 A complete CCB PISO component . 73

3.34 An up/down counter with synchronous parallel load capability 74

3.35 A VHDL implementation of the Event Counter component 75

3.36 The Metronome periodic pulse-generator . 76

A.1 A list of all CCB registers . 79

5

Chapter 1

Introduction

Figure 1.1: An overall summary of the FPGA connections

Figure 1.1 shows the overall architecture of the FPGAs with respect to the rest of the CCB. At
the heart of the system, the Master FPGA controls 4 slave FPGAs, receives commands and
sends interrupts and read-back configuration parameters, via the computer’s EPP parallel
port, dispatches observed data to the computer over a USB link, and controls calibration
diodes and phase switches in the receiver, via opto-isolated output cables. All of its timing
signals are derived from the Green Bank 10MHz and 1PPS reference signals.

6

Under the direction of the Master FPGA, each of the slave FPGAs continuously reads 14-bit
data samples from 4 ADCs at 10MSPS, and either integrates these samples until told to
deliver them to the Master FPGA, or, when in dump mode, delivers them un-integrated to
the Master FPGA.

Note that although a bi-directional 18-bit data-bus is shown in the diagram, the current
design only uses 16 of these bits, and only transfers data over them in one direction, directed
from the slave FPGAs to the master FPGA.

The following two chapters detail the internal logic and external interconnections of the Slave
and Master FPGAs, respectively.

7

Chapter 2

The slave FPGAs

There are 4 slave FPGAs controlled by one master FPGA. All of the slave FPGAs are
identical, so this chapter documents the internal components, and external I/O connections
of a single slave FPGA. Figure 2.1 shows the layout of a slave FPGA, showing the major logic
components within the FPGA, the internal interconnections between these components, and
all of the external I/O-pin connections to the 4 ADCs to the left, and to the master FPGA,
via the backplane bus, at the bottom of the diagram.

2.1 An overview of the internals of a slave FPGA

Starting from the left hand-side of the diagram, the adc clock input is a phase-shifted copy
of the main FPGA clock-signal. This signal clocks the 4 external ADCs, whose outputs are
then latched using the un-phase-shifted global FPGA clock, into input registers within the
associated Sampler components. The configurable phase shift between the two clocks allows
one to control at what point in each ADC sampling cycle the FPGA latches samples from
the ADCs, and thus allows one not only to accommodate the relative timing requirements of
the ADCs and the FPGAs, but also to move the noisy active part of the FPGA clock cycle
away from critically sensitive parts of the ADC clock cycle.

Next, the Sampler components take either the latched ADC samples, as their input samples,
or fake pseudo-random samples from the Signal Injector component, according to the state
of the test control-signal. The selected input samples are then both reproduced at the raw
outputs of the Sampler components, and integrated.

Within the individual Sampler components, each new sample is integrated by adding it to
one of 4 phase-switch bins, as directed by the phase control-signal. When the master FPGA
commands the start of a new integration period, by asserting the start signal, the contents
of these phase-switch bins are copied into output buffers, then the bins that are selected by

8

Figure 2.1: The top-level design of the slave FPGA

9

the phase signal, are initialized with the first sample of the next integration period, while
the remaining bins are zeroed.

The output buffers of the Sampler components, take the form of PISOs (Parallel In Serial
Out). The sin inputs and sout outputs of the PISOs within each Sampler component, are
chained together to form one long PISO that contains the final integrations of all of the
Sampler components.

The active-low nselect control-signal is asserted when the addr signal contains the board-
ID of the slave, and either of the active-low nread or nwrite strobes is asserted. This tells
the slave that the master wishes it to transfer data over the data-bus, in the direction that
is indicated by whether the nread signal or the nwrite signal is asserted. In the current
design the master never sends anything to the slaves over the data-bus, so the nwrite strobe
is simply ignored by the slave FPGAs.

When the nread signal is asserted, the addressed slave responds by sending the master either
integrated, or raw ADC samples, depending on whether the dump signal is asserted. The
master asserts the nread strobe just after the rising edge of the clock. Until the next clock
edge, all that this does is enable the tri-state output buffers of the addressed slave FPGA,
to drive the first sample onto the data-bus. One clock cycle later, on the next rising edge
of the clock, the data-bus lines are assumed to have settled, so the master FPGA reads the
initial sample off the data-bus. At the same time, the PISOs in the Sampler components
see the asserted nread strobe, and clock out the next data sample, ready to be read by the
master, another clock cycle later. Subsequently, samples continue to be clocked out on the
rising edges of the clock, until the nread strobe is deasserted again by the master.

The asserted nread strobe also causes the addressed slave to drive a bussed copy of its
heartbeat signal, data[17], as well as the currently unused data[16] output signal onto the
data-bus.

The source of the output data signal of a slave FPGA is determined by MUX2. In normal
integration mode, this selects the output of the integration PISO. In dump-mode, it selects
one of the raw Sampler outputs.

The phase control-signal has different interpretations in the two acquisition modes. In
normal integration mode, it identifies the phase-switch bin that the latest sample should
be added to, whereas in dump mode it identifies the Sampler whose raw samples are to be
passed to the data output, via MUX2.

Note that in normal integration mode, new integrations are ready to be read-out from the
slave’s output PISO on the second rising clock-edge that follows the rising edge of the start
signal.

10

2.1.1 The Heartbeat Generator

The slave FPGAs generate a heartbeat signal that has two uses. On the one hand, the
external PC104 based monitoring system monitors a leaky average of the heartbeat output
signal, which should be around half of the full-scale digital high voltage if the heartbeat is
toggling correctly. On the other hand, the heartbeat signal is also driven onto the bus, when
the slave is selected, so that the master FPGA can determine if that slave is present and
showing signs of life. The generation of this heartbeat signal is shown in figure 2.2.

Figure 2.2: The Heartbeat Generator component

Since an FPGA that has been fried, or has failed to load its firmware, could unpredictably
present any signal on its I/O pins, a dynamic heartbeat signal was chosen, with a known
pattern that the master FPGA could check for. The pattern that is used, is simply a signal
which toggles its state at each successive rising edge of the global clock. The master FPGA
checks this at the start of each clock cycle, simply by using an XOR gate to compare a
latched copy of the previous state of the heartbeat signal, to its current state. If the old
and new heartbeat values of a given slave, aren’t opposites, then that slave is flagged in the
output data that are sent to the CCB computer.

2.1.2 The Signal Injector

The job of the Signal Injector is to generate repeatable pseudo-random fake ADC samples, for
optional use by the Sampler components, in place of real ADC samples. The implementation,
as shown in figure 2.3, is essentially a conventional linear-feedback shift-register, configured
to generate 14-bit random positive integers. The sequence of random numbers repeats every
214− 1 clock cycles, and within this period, each number between 1 and 214− 1 is generated
exactly once. To ensure that the results are repeatable for each integration, the sequence is
re-started whenever the master FPGA asserts the start signal. This is done by asserting
the set input of the shift-register, which sets all of the bits of the shift-register to 1. The

11

Figure 2.3: The Signal Injector component

first number of the new sequence is ready to be latched on the rising clock edge that follows
the falling edge of the start signal. This is unfortunately one clock cycle too late for the
integrators, which latch their first sample during the same rising clock edge as the Signal
Injector is starting to reset itself. Thus while the Signal Injector is resetting itself, MUX1
substitutes 213 − 1 for the otherwise unpredictable output value of the shift register. The
value 213−1 was chosen because it is the end value of the pseudo-random sequence, and thus
usually precedes the random number sequence returning to its initial value of 214− 1. Thus,
from the point of the integrators, the sequence of fake samples simply starts one number
earlier in the cicrular sequence of pseudo-random numbers.

Note that if the value of the shift-register somehow becomes zero, then the generation of
random numbers ceases. However, although glitches could potentially force the register into
this state, the correct sequence will be started anew at the start of the next integration
period, so automatic restarting hasn’t been included. Automatic restarting would be of
dubious utility anyway, since the operator wouldn’t then see the repeatable test-sequence
that they were expecting.

12

2.1.3 The Sampler component

The job of the Sampler component is to acquire raw samples from the ADC, integrate
either these samples or fake ADC samples, within phase-switch bins, and present both the
resulting integrations, and the real or fake samples, for collection by the master FPGA. The
implementation is shown in figure 2.4.

Figure 2.4: The Sampler component

Register Reg1 uses the global FPGA clock to acquire successive sample and overflow signals
from the external ADC. Multiplexer MUX1 then takes either this sample and its overflow, or
a fake sample, with no overflow, and presents these to multiplexer MUX2. Multiplexer MUX2
either blanks the sample and overflow signals, by replacing them with zeroes, or presents
them unchanged to integrator Integrator1. The integrator then routes the resulting sample
and overflow signals to one of its 4 internal accumulators, according to the states of the phase
switches, and the sample is added to that accumulator. The Sampler also taps off a copy of
the sample and overflow bits, from before the blanking step, and presents these at the raw
output, for dump-mode data-collection.

Within the currently selected accumulator, if an input sample either has its overflow bit
asserted, or its addition to the integration would overflow the 32-bit accumulator, then the
contents of the accumulator are replaced with a 32-bit number that has all bits set to 1.
Thereafter, this state persists until the accumulator is reset for the next integration period.

The end of one integration period, and the start of the next, is signaled by the start input
signal, which the master FPGA asserts for one clock cycle. When this is asserted, the contents
of the integration bins are copied into an output PISO, within the integrator component, and

13

the integration bins are prepared for the new integration. Preparation for the new integration
involves initializing the accumulator of the currently selected phase-switch bin with the value
at the output of MUX2, and zeroing the accumulators of the remaining 3 phase-switch bins.

The data-bus between the slaves and the master FPGA isn’t wide enough to transmit all 32
bits of a given integration bin in one clock cycle. Thus, whenever the nselect input of a
slave FPGA indicates that the master FPGA wants to read data from that slave, the slave
tells the chain of 16-bit Sampler PISOs, to shift one 16-bit half of an integration bin onto
the bus at the start of each clock cycle. This starts with the least significant 16 bits of the
first accumulator of the fourth ADC.

2.1.4 The Integrator component

The function of the Integrator component has already largely been described in the documen-
tation of the Sampler component, so this section just describes its implementation, which is
shown in figure 2.5.

Most of the work of an Integrator component is performed by four embedded Accumulator
components, each of which represents one of the 4 phase-switch integration bins. Although
each new sample is seen by all of the Accumulator components, only the Accumulator whose
sel input is asserted, considers the sample for addition. The phase input, decoded by the
Decoder instance, thus determines which Accumulator gets the latest sample, at the start of
each new clock cycle.

The individual Accumulator components contain small PISOs that are chained by the parent
Sampler component, to form the PISO that the parent Sampler clocks.

2.1.5 The Accumulator component

The Accumulator component accumulates the samples of a particular phase-switch integra-
tion bin, as described in the documentation of the Sampler component. It’s implementation
is shown in figure 2.6.

In the diagram, the combination of the Adder component and register Reg0, form the ac-
cumulator cell that is used to integrate samples. This updates every clock cycle, regardless
of whether or not the accumulator bin is selected by the parent Integrator module. Thus
multiplexer MUX1 is used to add zero, instead of a new sample, at times when the input
sample should be ignored.

At the start of a new integration period, as indicated by the start input being asserted
for one clock cycle, multiplexer MUX0, which normally feeds back the previous value of the
registered output of the adder to the d0 input of the adder, substitutes a value of zero, to

14

Figure 2.5: The Integrator component

15

Figure 2.6: The Accumulator component

discard the previous accumulation. The initial output of the adder thus becomes equal to
the value at the d1 input of the adder, which is either equal to the 14 least-significant bits
of the sample input, if the accumulator is selected for integration, or to zero otherwise. In
the former case, whether the initial sample is then latched from the output of the adder into
register Reg0, depends on the state of the overflow bit of the sample, which is the topmost
bit of the sample input. If this bit is asserted, then instead of the initial sample value being
latched to the accumulator output, the accumulator is initialized with the value 232 − 1,
which is used to indicate an overflow condition to subsequent analysis software.

By the start of the next clock cycle, the master FPGA has deasserted the start input. On
this and subsequent clock cycles, the accumulator continues to behave as already described
for the initial clock cycle of the integration period, except that the registered output of the
adder is fed back to the d0 input of the adder, instead of zero.

If the 32-bit adder overflows, or the overflow bit of the sample is set when the Accumulator
is selected, the registered output of the adder is set to the special value 232 − 1. This is the
largest number that will fit into a 32-bit unsigned integer, so attempting to add any further
non-zero samples to this, causes the Adder component to assert its co output, which causes
MUX2 to reinstate the special value. Similarly, adding a sample whose value is zero, leaves
the special value unchanged. Thus once an overflow has occurred, the special value persists
at the output of the registered adder, until this value gets discarded by MUX0, at the start of
the next integration period.

The CCB PISO component following the accumulator, is a two-entry 16-bit-wide PISO, used

16

to stream the 32-bit output of the accumulator, in two 16-bit chunks, to the master FPGA,
followed by those of other Accumulator components. This customized PISO component is
documented in section 3.4.3. On the first rising edge of the clock that follows the start signal
going high, at the start of a new integration, the accumulator register is initialized with the
output of the adder, at the same time that the previous output of the accumulator register is
being latched into the PISO. One clock cycle later, the output of the PISO will have settled
to hold the least significant 16 bits of the accumulated integration. Thus integrated data
can safely start to be read out from the accumulators two clock cycles after the start signal
goes high.

Thereafter, whenever the shift input of the PISO is found to be asserted during the rising
edge of the clock, the PISO is clocked to output the next 16-bit chunk. The first time that
this happens, the initial output of the PISO is replaced by the 16 most significant bits of the
parent accumulator. The second time it happens the least significant 16 bits of the preceding
Accumulator in the chain of Accumulator PISOs, is presented, etc.

17

Chapter 3

The master FPGA

Figure 3.1 shows the layout of the master FPGA, showing its major internal components,
along with their interconnections, and all of the external I/O-pin connections to external
chips. The State Generator component, which can be seen as the central brain of this
design, orchestrates the timing and the values of all control-signals that go to the other
components within the master FPGA, as well as the control-signals that go to the slave
FPGAs. The State Generator is in turn told what to do by the computer, via the Control
Gateway component, which handles all interactions with the parallel port interface. The
Data Dispatcher component is responsible for sending integrated and dump-mode data to
the computer, via the USB interface. Finally, the Heartbeat Generator, which is identical to
the heartbeat generators of the slave FPGAs, generates a signal that can be monitored by
the computer, via a PC104 I/O card.

3.1 The Control Gateway

The Control Gateway handles all interactions with the CCB computer’s EPP parallel port
interface. It provides an 8-bit register-based interface for the CPU to use to send commands
and configuration data to the State Generator, allows read-back of these same registers, and
lets the State Generator interrupt the CPU via the parallel port interrupt line.

In addition, the reset signal of the EPP parallel port can be used at any time by the device
driver in the CCB computer, to reset the firmware and the USB chip. This will automatically
be done whenever the device driver is newly loaded.

The implementation of an 8-bit register-based interface, for use by the computer, is simplified
by the built-in support for separate address and data cycles in standard EPP hardware. Since
both of these targets have read and write cycles, there are 4 distinct I/O cycles, which are
assigned to CCB operations as follows:

18

Figure 3.1: The top-level design of the master FPGA

19

• The address write-cycle

The associated data-byte is interpreted as the address of one of the registers in the
FPGA. Subsequent data-read and data-write cycles read from and write to the ad-
dressed register.

• The data write-cycle

The associated data-byte is copied into the register that was indicated during the last
address write.

• The data read-cycle

The returned data-byte is the value of the register that was indicated during the last
address write.

• The address read-cycle

When the CPU initiates an address-read cycle, the FPGA responds by returning the
bit-mask of all FPGA event-sources that have requested interrupts since the last time
that the computer executed an address-read cycle.

There are only two periods when data are sent to the master FPGA by the computer.

1. When starting a new scan, a write to the control register is used to prepare the State
Generator for reconfiguration. This is followed by multiple EPP write-cycles to send
the configuration data of the new scan. The last such write is to the register which
instructs the State Generator to activate the new scan.

Note that since the FPGA does nothing with the configuration data that it is sent, until
it is told to start the next scan, it is safe to send the values of multi-byte configuration
registers, one byte at a time.

2. During a scan, the CPU sends the FPGA a single byte of integration-specific config-
uration data whenever the FPGA generates a configuration interrupt. At the start
of a scan, this happens repeatedly, until the FIFO that queues these bytes fills up.
Thereafter, integration-configuration interrupts are sent at the end of each integration,
as the removal of one integration-configuration byte from the FIFO, makes room for
another.

Since between scans, only the integration-configuration register is written to, the device
driver need not keep sending the address of the integration-configuration register before
each data write. Instead it sends it once, just after the command byte that activates
a new scan.

Thus, on average, each such interrupt will cause an EPP address-read to get the in-
terrupt mask, plus one EPP write to send the FPGA the configuration of the next
un-configured integration. Once the configuration FIFO is full, this happens once per
integration.

20

3.1.1 The internals of the Control Gateway

When configuration data and commands are received from the computer, they are recorded
in a bank of 8-bit registers. The values stored in this bank of registers are included in the
outputs of the Control Gateway, and are thus visible to the State Generator. The control
gateway treats all of the registers alike, leaving the interpretation of their contents to the State
Generator, where individual registers are interpreted, either as commands to be executed on
receipt, or as configuration data. The registers are updated synchronously with the FPGA
clock, and whenever a particular register is updated by the CPU, its attn (ie. attention)
output is held high for one clock cycle, to indicate to the rest of the CCB that the register
has been updated. The stored register values can also be read back by the CPU, via EPP
data-reads.

Figure 3.2: The Control Gateway

Since only one register can be read from or written to by the CPU in a single EPP transaction,

21

a way is needed for the CPU to specify which register is to be the current I/O target. As
previously mentioned, to do this, the CPU uses an EPP address-write transaction to send the
8-bit address of the register of interest. On receiving such an address, the Control Gateway
stores it in the EPP Address Register. Thereafter the output of the EPP Address Register
is used by the EPP Register Bank, to route any subsequent EPP data transactions to the
specified register.

The EPP Interrupter allows multiple interrupt sources in the FPGA to share the single
parallel-port interrupt line. When the CPU receives a parallel-port interrupt, it responds
by performing an EPP address-read, which both acknowledges the interrupt, and asks the
FPGA which FPGA event-sources requested the interrupt. The EPP Interrupter, which is
told about the address-read by the EPP Handshaker, responds by sending the CPU an 8-bit
interrupt mask, whose individual bits indicate which event-sources have requested interrupts
since the last time that the mask was read by the CPU.

The EPP Interrupter has a holdoff input, whose value is the minimum number of clock
cycles to wait after sending one interrupt, before sending another. This both prevents inter-
rupts from being sent too frequently, and sets the rate at which unacknowledged interrupts
are to be re-sent. Note that there is no danger that a re-sent interrupt will be interpreted by
the CPU as indicating two events in the FPGA, since it is the contents of the interrupt mask,
rather than the number of interrupts received, that matters, and the mask is automatically
cleared as part of the read operation.

To avoid a tug-of-war with the CPU, the FPGA only drives the data lines when explicitly
requested, as indicated by the send output of the EPP Handshaker being asserted. Thus
the tri-state output buffers in the I/O blocks of the data-line pins, and the external data
line transceivers are configured to passively receive data from the computer, except when
the send signal is asserted.

The EPP Handshaker

The EPP Handshaker module, as depicted in figure 3.4, is responsible for responding to the
standard EPP handshaking signals for all single-byte EPP transfers.

The timings of the two standard EPP I/O cycles are shown in figure 3.3. Note that the
strobe signal represents either the addr strobe or data strobe signals, depending on
whether an address-write or data-write cycle is in progress, and that the write, data strobe,
addr strobe, and wait EPP signals are all active-low. The write and strobe signals are
generated by the computer, while the wait signal is generated by the FPGA. The 8-bit data
signal is generated by the computer when performing an EPP write-cycle, and by the FPGA
when performing an EPP read-cycle.

At the start of each FPGA clock-cycle, the value of the wait signal is derived from the
previous value of this signal, using the value of the write signal, and the value of the

22

Figure 3.3: The standard EPP I/O cycles

Figure 3.4: The EPP Handshaker

23

appropriate strobe signal, according to the truth table shown to the right of figure 3.4. The
circuit within the dashed box implements this truth-table.

The data strobe and addr strobe inputs of the circuit in the dashed-box, are pre-conditioned
by latches 1 and 2, which both re-time them to rise and fall in sync with the FPGA clock, and
also invert them. The asynchronous signals at the inputs of these latches will periodically
violate the latch setup and hold times, resulting in the latch output signals being metastable
for an indefinite duration. Thus it is important that the outputs of latches 1 and 2 be given
one clock cycle to settle, before they are used. Other Control Gateway components are thus
required to use latches which only respond to the outputs of the EPP Handshaker when
the strobe output is asserted at the start of a clock cycle. Note that latch3 ensures that
the strobe output is asserted for at most one clock cycle after either of the input strobes
becomes asserted. Thus the other components in the Control Gateway will see an asserted
strobe signal just once per EPP strobe, one clock cycle after latches 1 or 2 see the EPP
strobe. Latch 4 ensures that the wait signal also goes high one clock cycle after each EPP
strobe, in sync with the FPGA transferring data to and from the EPP data lines.

Note that a side-effect of synchronizing the EPP signal with the local clock is that it po-
tentially adds either 1 or 2 FPGA clock cycles to the handshaking delay, and thus reduces
the possible throughput. However, since the CCB won’t be streaming large amounts of data
through the parallel port, this shouldn’t be important. The bottom line is that the rising
edge of the output wait signal follows the falling edge of the pertinent strobe signal by
between 1 and 2 FPGA 10MHz clock cycles, and this corresponds to between 0.8 and 1.6
EPP 8MHz clock cycles. Thus each EPP I/O transaction will be lengthened from the stan-
dard 4-cycle minimum duration, to either 5 or 6 8MHz cycles, and thus last either 0.625µs
or 0.75µs, instead of 0.5µs.

Note that, unlike the strobe signals, the wait and write signals aren’t pre-latched, since
the EPP protocol assures that they will have stabilized before the pertinent strobe signal
is driven low, and remain stable until after the wait line is next driven high.

The isaddr output signal tells the other components of the Control Gateway that the strobe
signal represents an address transaction. Similarly the send output indicates whether this
is an EPP read (send=1) or EPP write (send=0) transaction. Since these signals have one
clock cycle to settle, before other components see an asserted strobe output signal, they
can be used to drive routing logic, such as multiplexers, that also need time to settle, before
the strobe causes data to be latched through them, to or from the data lines.

The EPP address register

The EPP Address Register, as shown in figure 3.5, holds the address of the target data-
register of subsequent EPP data-write and data-read cycles. It is implemented using an
8-bit register with a synchronous enable-input, ien (see section 3.4.2). At the start of most
clock cycles, the existing value of the enable input is not asserted, so the register retains its

24

Figure 3.5: The EPP Address Register

current value. However, when the strobe, isaddr and send inputs indicate that an EPP
address-write transaction is in progress, the asserted ien input of EReg1, causes the signals
on the EPP data lines (at the a in input) to be loaded into the register.

The a out output is permanently connected to the addr input of the EPP Register Bank
module, and thus specifies which register in the bank of registers, is to be addressed in
subsequent data-register I/O transactions.

The EPP Register Bank

The EPP Register Bank, as shown in figure 3.6, contains the registers that are used to
record and provide read-back of configuration parameters and command opcodes sent by
the CPU. The addr input, which comes from the EPP Address Register module, selects
which register should present its contents at the d out output, and which register should
latch a new value from the d in input, when an EPP data-write transaction is in progress.
The current values of all of the registers are also made available to the State Generator, at
the regs0..N outputs, and whenever any register is updated, the corresponding attn0..N
output is asserted for one clock cycle to inform the State Generator.

When an EPP data-write transaction is initiated, the EPP Handshaker deasserts the isaddr
and send inputs of the EPP Register Bank, then asserts the strobe signal for up to one clock
cycle, until just after the clock cycle at which the value on the EPP data lines, presented at
the d in input, should be latched into the currently addressed register. To this end DMUX1
routes the output of AND gate A1 to the load input of the currently selected register, which
latches the data at its d input at the start of the clock cycle at which it sees that load has
become asserted.

Note that although the 8-bit width of the addr input would allow up to 256 registers to be

25

Figure 3.6: The EPP Register Bank

26

addressed, much fewer registers are actually needed, so the smaller number of bits shown
going to MUX1 and DMUX1, has been chosen to accommodate the preliminary list of registers
given in section A.

The individual data registers are implemented as EPP Data Register modules, as shown in
figure 3.7. During clock cycles when an asserted load input indicates that an EPP data-
write transaction to this register is in progress, the asserted input-enable input (ien) input
of latch EReg1 (see section 3.4.2), causes the signals on the EPP data lines, at the d input,
to be loaded into the register. Simultaneously, Latch1 latches the asserted load input to the
attn output, and thus indicates to the State Generator whenever the register is updated.
During all other clock cycles, the contents of the register remain unchanged, and the attn
output is held low.

Figure 3.7: An EPP Data Register

The EPP Interrupter

The implementation of the EPP Interrupter module is shown in figure 3.8.

As explained shortly, the CCB FPGA has three sources of interrupt-worthy events, all of
which share the single parallel-port interrupt line (intr), under the auspices of the EPP
Interrupter module. As such, the receipt of a parallel-port interrupt by the computer does
not necessarily imply the occurrence of any particular new event in the FPGA. What it does
tell the computer is that it should perform an EPP address-read to find out which events have
occurred since the last time that it performed such a read. The resulting loose association
between individual events and parallel-port interrupts, reduces the number of interrupts that
the CPU has to handle, and allows a repeat interrupt to be sent if the computer appears

27

Figure 3.8: The EPP Interrupter module

28

to have missed the previous one, without any danger of the computer incorrectly believing
that a repeated interrupt represents a new event. Similarly, the only harm that spurious
interrupts can do is steal a bit of CPU time, since the bit-mask of events returned by the
subsequent EPP address-read, after a bogus interrupt, will indicate that nothing has really
happened.

Interrupts are sent to the CPU at most once every holdoff clock cycles. In particular,
once any interrupt source has requested an interrupt, a new CPU interrupt is sent every
holdoff clock cycles, until the computer performs an EPP address-read to get the bit-mask
of previously unreported events.

When a particular event-source in the FPGA wishes to notify the computer of a new event,
it synchronously asserts the associated one of the cal intr, int intr or sec intr interrupt-
request inputs of the EPP Interrupter for one clock cycle. Just after the end of this clock
cycle, the corresponding IRQ (interrupt-request) register becomes asserted, and remains
asserted until the computer next performs an EPP address-read to query which event-sources
have requested interrupts.

The EPP Interrupter examines the irq outputs of the IRQ registers at the start of each
clock cycle, and if any of them are asserted, and the hold-off counter isn’t still counting
down from the previously sent interrupt, it raises the parallel-port intr signal to interrupt
the CPU, and holds this signal high for two FPGA clock cycles (ie. 1.6 EPP 8MHz clock
cycles). Simultaneously, it reloads the hold-off down-counter with the number of clock cycles
that it should hold-off the generation of the next interrupt.

When the computer responds to the receipt of an interrupt, by performing an EPP address-
read, the EPP Handshaker asserts the isaddr and send inputs, then asserts the strobe
input for up to one clock cycle, until just after the clock cycle at which the bit-mask of
unreported events should be latched onto the EPP data lines. At the end of this clock cycle,
all of the IRQ registers respond to this by moving their current irq output signals to their
mask outputs, while resetting their irq outputs (unless a new interrupt is simultaneously
being requested).

Note that if an event-source requests a new interrupt while its IRQ register is still asserted
from a previous unacknowledged request, the new request is lost. A way to prevent such
losses would be to implement the IRQ registers using up/down counters. New interrupt
requests would increment these counters, and acknowledgements would decrement them.
The first iteration of this design did just that. However, interrupts generally represent
events that require a response while the interrupting event is still relevant, so queuing out-
dated interrupts is pointless. Furthermore, anytime that EPP interrupts were disabled, the
CCB would quickly queue hundreds of unacknowledged events, which when interrupts were
subsequently re-enabled, would then keep the CPU busy for a while acknowledging stale
events. For these reasons, the idea of using up/down counters was abandoned, and it was
decided that it made more sense to simply design the event-sources and the device driver
around a limitation of one queued event per interrupt source, per EPP address-read.

29

Figure 3.9, shows the internals of a single IRQ register.

Figure 3.9: An Interrupt Request (IRQ) Register

When the event source associated with this register wishes to send an interrupt, it asserts the
intr input for one clock cycle. At the end of this cycle (ie. the start of the next clock cycle),
ELatch2 (see section 3.4.1) becomes asserted. It stays asserted until the ack (acknowledge)
input is subsequently asserted for one clock cycle, at which point, the value of ELatch2 is
transfered to ELatch1, while ELatch2 adopts the current value of the intr input. Thus,
whereas normally an asserted ack signal causes ELatch2 to be cleared; if a new interrupt
is requested at the same time as the ack input is asserted, ELatch2 will record the new
interrupt, instead of the new interrupt request being lost.

The end result is that the irq output reliably indicates whether the parent event-source has
requested one or more interrupts since the last time that the mask output was updated by a
pulse on the ack input.

The three interrupt sources that are envisaged at this point, are the following:

• cal intr - Calibration-diode configuration interrupts.

Before the start of each new integration, the State Generator needs to know the de-
sired on/off states of the cal-diodes. In principle this could be sent one integration
in advance, from an end-of-integration interrupt handler. That was the original plan.
However, to soften the real-time requirements placed on the device driver in the CCB

30

embedded computer, and thereby make the CCB insensitive to occasional transient
anomalies in Linux’s interrupt latency, the current plan is to instead implement a
FIFO containing the configurations of many integrations in advance, instead of just
one. Keeping this FIFO filled is the job of the cal intr interrupt. At the start of a
scan, to fill the FIFO, multiple cal intr interrupts are generated, each one telling the
computer to send one new calibration-diode configuration, for one or more consecutive
integrations that are to have the same configuration. Thereafter whenever the oldest
configuration in the FIFO is exhausted, that configuration is discarded from the FIFO,
and a new entry is requested by sending another cal intr interrupt.

The rapid-fire cal intr interrupts at the start of a scan are rate-limited in two ways.
First, a new cal intr input-signal is never raised by the State Generator until the
CPU responds to the previous one by sending a new cal-diode configuration entry.
Secondly, the holdoff timer of the EPP Interrupter sets a hard limit on the parallel-
port interrupt rate, regardless of how quickly the CPU responds.

• int intr - Integration-done interrupts.

Integration-done interrupts are generated when one integration ends and another starts.
If a new integration starts before the interrupt from the start of the previous integra-
tion has been acknowledged by the computer, the new interrupt request is simply
discarded, but the previous integration request continues to generate retry interrupts
at intervals controlled by the holdoff timer. Thus the CCB device driver should not
count integration interrupts to determine how many integrations have been completed
at a given time, and nor should it use this interrupt for anything that absolutely has to
be performed within a small time frame following the boundary between 2 integrations.

As mentioned in the discussion of the cal intr input, originally integration-done in-
terrupts were needed for sending cal-diode configurations one integration at a time. It
isn’t clear yet whether this event will be useful for anything else in the device driver,
so for the moment, it is included here mostly as a placeholder, and may end up being
removed.

• sec intr - 1 second interrupts.

A sec intr interrupt is requested once per second, at the rising edge of the second
FPGA clock cycle that follows the rising edge of the pulse of the external 1PPS signal
(to avoid metastable latch states). Like the integration interrupt, if a previous 1-second
interrupt hasn’t been acknowledged by the time that a new one is to be generated, the
new one is simply ignored, while the EPP interrupter continues to retry sending the
original. Given the length of time between these interrupts, this should only happen
when the CCB device driver isn’t loaded, or if either the parallel cable or the computer
are damaged.

By default, at boot time, EPP interrupts are disabled, and a write to the parallel-port
configuration register is needed to enable them. While they are disabled, signals on the intr

31

interrupt line are simply ignored by the computer. Thus the FPGA doesn’t redundantly
provide its own way to enable and disable the generation of interrupt signals on the intr
line. Note that the resending of unacknowledged interrupts every holdoff clock-cycles,
ensures that interrupts that are missed while the parallel-port has interrupts disabled, get
re-sent and acknowledged as soon as interrupts become enabled.

3.2 The Data Dispatcher

At the end of each integration period, and at the start of dump mode, the Data Dispatcher
component reads integrated or dump-mode data from the slave FPGAs into a large FIFO,
then streams the contents of this FIFO, preceded by a header, to the computer, via the USB
bus. All communications over the USB bus are directed from the FPGA to the computer.
Thus, although the read (rd) and read-enable (rxf) pins of the USB interface are shown as
inputs to the Data Dispatcher, there are no plans to use them at the moment.

Note the use of the DLP-USB245M module. This is a tiny PCB module containing a 6MHz
crystal, a surface-mount FT245BM USB1.1 chip, a USB connector and all the interconnec-
tions needed between these parts. The PCB is just 1.5 × 0.7 inches in size, and the USB
connector sticks out a further third of an inch from one end. The module can be soldered
onto the CCB PCB, via 24 dual in-line pins. Its data-sheet can be downloaded from:

http://www.dlpdesign.com/usb/dlp-usb245m12.pdf

The two of these modules that I bought for testing the FT245BM, I got from a company
called Saelig (www.saelig.com), which is an official US distributor for the FT245BM. The
modules arrived overnight. Since then, I have noticed that Mouser Electronics carries them
as well. Their catalog number at Mouser is 626-DLP-USB245M, and they cost $25.

3.2.1 The internals of the Data Dispatcher

Figure 3.10 shows the building blocks of the Data Dispatcher, and how they are intercon-
nected.

One clock cycle after the start input-signal is asserted, to tell the Data Dispatcher to collect
and dispatch a new frame of integrated or dump-mode data to the computer, the Slave
Reader asserts its read output, and keeps it asserted until all available data-samples have
been transfered from the slave FPGAs into a FIFO within the Frame Buffer. At the rising
edges of the clock, this signal is examined both by the Frame Buffer and by the currently
addressed slave FPGA, and when it is found to be asserted, it causes the transfer of one
16-bit data-sample from the addressed slave to the Frame Buffer.

32

Figure 3.10: The Data Dispatcher

33

The currently addressed slave FPGA is the one identified by the slave output of the Slave
Reader. In normal integration mode, this slave-address is first set to that of the highest
numbered slave FPGA, and then, after all of that slave’s samples have been transfered, to
the next lower numbered FPGA, and so on, until the samples of all of the FPGAs have
been transfered to the Frame Buffer. In dump mode, the slave output is simply assigned
the value of the dslave input, which identifies the slave whose raw ADC samples are to be
collected.

Both during and after the period when samples are being read from the data-bus into the
Frame Buffer’s FIFO, the Frame Buffer streams the frame-header, followed by the contents
of the FIFO, to the USB interface chip, 8 bits at a time.

Once all data in the Frame Buffer FIFO have been delivered to the USB chip, the empty
output of the Frame Buffer is asserted, to tell the Slave Reader that it is okay for it to start
collecting a new frame. At the same time, the USB chip’s flush input is asserted, to tell
it not to await any further data, before flushing the data that it has received so far, to the
computer.

The Slave Reader de-asserts its read output, to terminate collection of the current data-
frame, either when all data have been read from the slaves, or when the Frame Buffer
indicates that its FIFO is full, and thus can’t accept any more samples. The latter should
only occur if the computer has asked for a dump frame that is too big to be accommodated
by the Frame Buffer.

Note that since the Slave Reader doesn’t allow the collection of a new data frame to be
initiated until the Frame Buffer indicates that the previous one has been completely sent,
and because the collection of a given frame of data is terminated if the FIFO becomes full,
there is no danger of gaps in the collected data, caused by temporary overflow conditions
in the Frame Buffer’s FIFO, or of a new frame trampling on the contents of a frame that
hasn’t been fully sent yet.

The idle output signal of the Data Dispatcher is asserted when the Data Dispatcher is not
in the process of either collecting or sending a data-frame to the computer. This is used by
the State Generator to determine when it is safe to terminate a scan.

The internals of the Slave Reader

The implementation of the Slave Reader is shown in figure 3.11.

As previously described, the Slave Reader selects one slave at a time to write to the data-bus,
by way of its slave output, while, at the same time, asserting its read output, to tell both
that slave, and the Frame Buffer, to transfer one sample over the data-bus, at each rising
edge of the clock.

34

Figure 3.11: The Slave Reader

When the empty input signal is asserted, Latch1 and the combinational logic around it,
arrange for the read signal to go high, one clock cycle after the start input pulses high
for one clock cycle. In normal integration mode, this initiates the collection of integrated
samples from the preceding integration period. In dump-mode it initiates the collection of
raw ADC samples for the subsequent dump-frame period.

Alternatively, if the empty input signal is still low, when the start pulse arrives, this means
that the Frame Buffer is still busy sending the previous data-frame, and is not ready to
start collecting a new frame. When this happens, the low empty input-signal prevents the
Slave Reader from seeing the start pulse. As a result, a new data-collection period is not
initiated, and the data that would have been collected, are simply discarded.

So, when a start pulse arrives when the empty signal is asserted, although the start pulse
only lasts for one clock cycle, Latch1 and its surrounding logic thereafter hold the read signal
high until either the full input is asserted by the Frame Buffer, or the countdown of samples
remaining to be collected, reaches zero. The read input is then pulled low, to terminate the
collection of samples, and thereafter held low until a new start pulse is received.

The start pulse, when enabled by the empty input, also loads a down-counter with the
number of samples that are to be read. The counter thereafter counts down by one at the
start of each clock cycle, until one clock cycle before the read input is due to go low again,
which happens either when the Frame Buffer asserts the full input, or the output count of
the counter reaches zero.

35

In normal integration mode, MUX1 initializes the down-counter to 127, which is 32samples×
4slaves. The 2 most significant bits of this number, in the output count, are used to select
which slave is to be read, such that 32 16-bit samples are read from one slave at a time,
starting with the the 4th slave, and working down to the 1st slave.

In dump mode, MUX1 initializes the counter with the value presented by the State Generator,
at the dsize input. This specifies how many dump-mode samples to attempt to collect.
Although this can be any 16-bit number, if it exceeds the capacity of the Frame Buffer’s
FIFO, the actual number of samples collected and sent to the computer will be truncated
to fit in the available space. Unlike in normal integration mode, where the output of the
counter dynamically selects which slave is to be read from, in dump mode MUX2 arranges
that all of the dump-mode samples be loaded from the single slave that is specified by the
dslave input.

To better illustrate the operation of this circuit, a timing diagram of it, derived by hand, is
shown in figure 3.12.

Figure 3.12: A timing diagram of the Slave Reader

36

The internals of the Frame Buffer

As shown in figure 3.13, the Frame Buffer has three major parts.

1. A Frame Header. This initially contains an 8 × 16-bit header describing the sample
data.

2. A large FIFO, in which sample data are collected from the slave FPGAs at a faster
rate than they can be sent to the computer.

3. A Byte Streamer component which transfers data, first from the header, then from the
FIFO, to the USB interface chip.

Figure 3.13: The Frame Buffer

Note that the contents of the FIFO are streamed through the Frame Header’s internal PISO.
Thus, to ensure that as each sample gets shifted out of the Frame Header’s PISO, a new
sample is shifted into it from the FIFO, the shift output of the Byte Streamer is connected

37

to both the output-enable, oen, input of the FIFO and the shift input of the Frame Header.
This is how the two data sources are combined into one stream.

The purpose of Latch1 is to form a pulse that lasts for one clock cycle, starting from the
moment when the read input signal first goes high. This is used to initialize the Frame
Header and the Byte Streamer at the start of each new frame.

The internals of the Frame Header

As shown in figure 3.14, the Frame Header is basically an 8-entry, 16-bit synchronous PISO.

Figure 3.14: The Frame Header

Note that instead of using a conventional PISO, a copy of the customized PISO described
in section 3.4.3, is used. This has separate load-enable and shift-enable inputs, which
are acted upon at the rising edge of the clock. Unlike a conventional PISO, which either
shifts serial data or loads parallel data on each clock cycle, the contents of the customized
PISO remain unchanged during clock cycles when neither the load nor the shift signals
are asserted. This is important, since the Byte Streamer doesn’t want to be force-fed a

38

new sample from the Frame Header every clock cycle, due to the handshaking overhead and
flow-control delays imposed by the USB chip.

A new frame-header is loaded into the PISO by arranging for the load input of the Frame
Header component to be asserted at the next rising edge of the clock. This fills the eight
16-bit entries in the PISO with the following information.

• The first of the 16-bit header words (ie. d0) identifies the type of frame that is being
packaged, and since it has a value that doesn’t look like a data value, the CPU can use
it as the indication of the start of a new frame, in case other frame separation measures
don’t work.

Note that a normal data value will either be zero, in the case of a missing ADC board,
or be a significantly non-zero number, in the presence of sampled noise. So a small
non-zero 16-bit number, is a good choice for something that should not look like a data
sample.

Thus to ensure that the first header-word not look like a data sample, its 16-bit value
is always a small non-zero number, having either the value 1 or the value 3. A value
of 1 signifies that the frame is a normal integration frame, whereas a value of 3 means
that it is a dump-mode frame.

• The second of the header words is a 16-bit word indicating various conditions that
pertained while the data were being taken. Bits 0 through 3 form a boolean list of the
slave FPGAs whose heartbeat signals indicate that they are present and functioning.
Bit 4 reports whether the samples that were integrated, or dumped were fake test
samples or real ADC samples. Bit 5 tells the CCB manager that the cal-diode switches
were stable throughout the integration. Bits 6 and 7 report the commanded states of
the cal-diode switches during the integration. The remaining 8 bits are currently
unused.

• The 3rd and 4th header words are the least and most significant 16 bits of a 32-bit
number, which specifies the sequential number of the integration within its parent scan,
starting from zero for the first integration of a new scan, and incrementing by one each
time that a new integration starts.

• The 5th and 6th of the header words are the least and most significant 16-bits of
the 32-bit number which identifies the parent scan, according to the number of new
scans (and intra-scans) that had been requested when the parent scan was commanded.
Whenever the CCB firmware is reset, the scan-counter is reset to zero.

• Finally, the 7th and 8th header words are the least and most significant 16 bits of a
32-bit time-stamp. This is the value of a counter in the State Generator which is reset
to zero at the start of each new scan, and incremented by 1 every clock cycle thereafter.
Thus the time-stamp measures the time elapsed since the start of the second on which
the last scan started, has a resolution of 100ns, and wraps around every 430 seconds.

39

On the real-time computer, the sum of the absolute time of the 1PPS edge on which the
scan was started, and the above relative time-stamp (after accounting for wraparounds),
will form the high-resolution time-stamp that is sent with the data, to the manager.

Once the PISO has been initialized, the shift input, when asserted during the rising edge
of the clock, causes the contents of the PISO to be shifted by one towards the so output.
This presents the next previously unseen value, at the so output, while shifting in a new
value from the si input.

The internals of the Byte Streamer

Figure 3.15 shows the contents of the Byte Streamer component.

Figure 3.15: The Byte Streamer

The Byte Streamer takes one 16-bit sample at a time from its d input, and sends this to the
USB chip, via the q output, starting with the least significant 8-bits, followed by the most

40

significant 8-bits. Since the Frame Buffer fills up much faster than the USB chip accepts
bytes for transmission, there is never any need for the Byte Streamer to wait for more data
to arrive in the FIFO, once a new frame has been started. Thus the flow of data is solely
regulated by the transmit-enable, txe, output of the USB chip. From the point of view of
the FPGA firmware, the txe signal is asynchronous, and thus needs to be passed through
a pair of latches to stabilize and synchronize it with the FPGA clock. This is satisfied by
latches 1 and 2. Note that Latch2 is negative edge-triggered, while all other latches are
positive edge-triggered. There are two reasons for this.

1. This reduces the time taken for a change in the state of the txe signal to reach the
output of Latch3, by a full FPGA clock cycle. This correspondingly speeds up the
handshake with the USB chip.

2. It is needed to arrange for the active edge of the write strobe to occur more than half
a clock cycle after new data have been presented on the q output that goes to the USB
chip, and half a clock cycle before this data is replaced with the next byte. This safely
exceeds the 20ns setup and 10ns hold-time requirements of the USB chip.

Latch3 and the exclusive-OR gate which drives its input, effectively form a latched 1-bit
counter. This counts the number of txe pulses, modulo 2, and its output is used by multi-
plexer MUX1, to select which of the two halves of the 16-bit number at the d input, is latched
into register, Reg1, and subsequently read by the USB interface chip. After both bytes of the
d input have been transfered in this way, the shift output is asserted for one clock cycle,
to tell the Frame Buffer FIFO and the Frame Header components to present a new 16-bit
number at the d input.

The 16-bit counter, Event Counter1 (see section 3.4.4), keeps a record of how many 16-bit
samples remain to be transfered from the Frame Buffer’s FIFO and Frame Header compo-
nents. When the load input is pulsed, for one clock cycle, at the start of a new frame, the
counter is pre-loaded with the number of samples in the frame header. Thereafter, it counts
up by one whenever the read strobe is found to be high at the rising edge of the clock,
indicating that a new sample is being read into the FIFO, from the slave FPGAs. Similarly,
it counts down by one when the shift strobe is pulsed, indicating that a new 16-bit sample
has been transfered to the USB interface chip. When both the shift and read strobes are
asserted, the count remains unchanged, since the number of samples remaining in the FIFO
and header, remains unchanged. When the number of samples remaining to be transfered
from the FIFO and header, reaches zero, the output of the 16-input OR gate at the output
of the counter, goes low, and this asserts the empty output signal, indicating to the Slave
Reader, that all data have been transfered to the USB chip.

A timing diagram illustrating the operation of the Byte Streamer, is given in figure 3.16. In
this diagram, the example frame has only one header entry, instead of 8, and only one data
sample. Note that the pulses of the shift signal that are marked with an x, are unintentional
side-effects that don’t affect the intended operation of the circuit.

41

Figure 3.16: A timing diagram of the Byte Streamer

42

The internals of the Slave Detector

The Slave Detector module attempts to determine whether each of the slave FPGAs are
present and functional, by monitoring their heartbeat signals. Each slave emits a single-bit
heartbeat signal which changes state at the start of each new clock cycle. The job of the
Slave Detector is thus to verify that each of the heartbeat signals switches state from one
clock cycle to the next. The implementation is shown in figure 3.17.

Figure 3.17: The Slave Detector

As can be seen, each slave has its own Heartbeat Detector module, which is enabled when
the slave is selected for readout by the Slave Reader. At the end of each integration the 4
alive outputs of the Heartbeat Detectors, combined into the 4-bit roster output, provide
an indication of which slaves were alive during the integration period.

43

The internals of the Heartbeat Detector modules

The implementation of the individual Heartbeat Detector modules is shown in figure 3.18.

Figure 3.18: The Heartbeat Detector

When the sel input of a Heartbeat Detector module is asserted, a rising edge at the clock
input causes ELatch1 (see section 3.4.1) to acquire the state of the heartbeat signal, at the
hb input. At the same time, the previous state of the heartbeat signal is transfered from
ELatch1 to ELatch2. Since a functional heartbeat signal changes state at the same point in
each new clock cycle, the outputs of latches 1 and 2 should be complements of each other. If
so, the exclusive OR of these outputs will be true. Thus the alive output indicates whether
the heartbeat signal was present, and behaving correctly, during the last two clock cycles.

When the sel input of a Heartbeat Detector module is not asserted, this means that the
heartbeat signal of a different slave is being sampled by a different Heartbeat Detectormodule.
Thus, the de-asserted input-enable (ien) inputs of ELatches 1 and 2 prevent their parent
latches from responding to the other module’s heartbeat signal.

Individual slaves are always selected for readout for many consecutive clock cycles, so al-
though it takes a couple of clock cycles after a slave has been newly selected, for the alive
output to reliably indicate the presence or absence of a slave; by the time that the readout of
that slave has finished, the alive output will have settled into the appropriate state. This
state is then preserved, while the sel input is not asserted, until just after all of the alive
outputs are sampled for inclusion in the header of the latest data frame.

44

Figure 3.19: The State Generator

45

3.3 The State Generator

The State Generator is the central hub that responds to commands and configuration in-
formation from the CCB real-time computer, sequences the activities of the other top-level
modules in the master and slave FPGAs, commands CPU interrupts, controls the cal-diode
and phase switches in the receiver, and receives and conditions the external 1PPS and FPGA
clock signals. The internals of the State Generator are depicted in figure 3.19.

Along the lower half of the left edge of figure 3.19, the external 1PPS and FPGA clock
signals enter the FPGAs, to be conditioned for use elsewhere within the FPGAs. Along the
upper half of the left edge, the cal-diode and phase-switch control signals exit on their way
to the receiver.

At the top of the right edge of the diagram are the signals that go to the slave FPGAs
and the Data Dispatcher. In the middle of the right edge are the read-only register values
and notification signals that the Control Gateway distills from its communications with the
CCB computer. At the bottom of the right edge, are the interrupt signals that go to the
CCB computer via the EPP interface in the Control Gateway. The remaining signals are the
conditioned clock signal that goes to the other modules in the FPGAs, the EPP reset signal
from the Control Gateway, the idle signal which tells the State Generator when the Data
Dispatcher has finished sending the data of the last integration period to the computer, and
the holdoff interval that tells the Control Gateway the minimum interval to wait between
generating interrupts.

Everything in the State Generator occurs according to configuration information and com-
mands received from the CCB computer, via the register interface that the Control Gateway
presents to it. The 8-bit registers are presented as a group to the State Generator, via the
regs input signal, which is thus an integer multiple of 8-bits in width. The same number of
single-bit attn (ie. attention) input signals tell the State Generator whenever the individual
registers are updated, by being asserted for one clock cycle after the corresponding register
has been updated. The official list of CCB registers, together with their contents and effects
can be found in appendix A.

Within the State Generator the Scan Initiator module starts and stops scans, according to
commands received from the computer, via the Control Gateway. It also presents a frozen
snapshot of the scan-configuration registers to the other modules.

The Receiver Controller controls the receiver phase-switch and calibration-diode control lines.
The Slave Controller generates the signals that control the acquisition and integration of data
by the slave FPGAs. The Dispatch Controller controls the collection of data from the slave
FPGAs, at the boundaries between integration periods, and the communication of these
data to the computer.

46

3.3.1 The Scan Initiator

An overview of the Scan Initiator functionality

Within the State Generator, the Scan Initiator is the module which responds to the real-time
computer writing to the start scan reg register. When this happens, the Scan Initiator
performs the following actions.

• Simultaneously it first performs the following actions.

– The run rx signal is deasserted, to tell the Receiver Controller to stop toggling the
receiver’s cal-diode and phase-switch control lines, and to tell it to clear its queue
of integration configurations. The latter queue must be cleared within one clock
cycle of the run rx signal becoming deasserted, and thereafter allowed to receive
new entries from the computer. Thus, in the time between one scan being halted,
and a new one being started, the computer can start to send the configurations
of the initial integrations of the new scan.

– Similarly, the run acq signal is deasserted to tell the Dispatch Controller to stop
the Data Dispatcher from collecting any further integration periods of data. If
an integration period just ended, and its data are in the process of being col-
lected and dispatched to the computer, this is allowed to continue. But until the
run acq signal is asserted again, the data of subsequent integration periods must
be discarded.

– A snapshot of the values of the configuration registers at the config input is
copied into an internal bank of registers. At the output of this bank the 8-bit reg-
isters are collected into multi-byte logical registers and presented as output signals
to configure the other modules within the State Generator. Taking a snapshot of
the configuration registers, in this way, provides a guarantee that configuration
updates from the computer only take affect at the start of the following scan.

– If the sync flag in the start scan reg register is set, the Scan Initiator arms a
latch to assert a time-synchronization flag at the next rising edge of the 1PPS
signal. Otherwise it asserts this flag without waiting, since synchronization with
the 1-second tick has not been requested.

• A few clock cycles after doing the above operations, the Scan Initiator simultaneously
waits both for the aforementioned time-synchronization flag to be asserted, and for
the Data Dispatcher to assert the idle signal, indicating that it is ready to start
collecting and dispatching data from the new scan. The delay of a few clock cycles
before checking for these conditions reflects the fact that it takes a few clock cycles
before the Data Dispatcher reports that it is not idle, after it has been told to start
collecting a new frame of data.

• Once both the idle signal and the time-synchronization flag are found to be asserted,
the Scan Initiator asserts the run rx output signal. This causes the Receiver Controller

47

to adopt the configuration parameters presented by the scan regs output of the Scan
Initiator, and then start the Receiver Controller’s control loop.

At the same time, the Scan Initiator starts a countdown of the number of clock cycles
that it takes for the initial effects of toggling any of the receiver’s control signals, to
become apparent in the data that reach the slave FPGAs. This is referred to as the
round-trip delay countdown.

• When the round-trip delay countdown reaches zero, the Scan Initiator asserts the
run acq signal. This causes both the Slave Controller and the Dispatch Controller to
adopt the scan configuration parameter outputs of the Scan Initiator, and then start
controlling their respective charges.

At the cores of the three controller modules, are identical copies of the Scan Sequencer
module, which generates the timing signals that control transitions between the various states
within a scan. Because of the delay between the run rx and run acq signals being asserted,
the Scan Sequencer in the Receiver Controller generates timing ticks that precede their
equivalents in the Scan Sequencers of the Slave Controller and Dispatch Controllermodules.
This deliberate timing offset compensates for the round-trip delay between receiver-control
signals being generated by the Receiver Controller, and the resulting effects reaching the
data-acquisition modules within the slave FPGAs.

For example, after the Receiver Controller toggles the states of the phase switches, the Slave
Controller doesn’t immediately stop the slave FPGAs from integrating samples into the
previous phase-switch accumulation bin. Instead, the change in phase-switch bins is delayed
by the round-trip control delay, so that residual samples from the previous phase-switch
state don’t get incorrectly added into the accumulation bins of the new phase-switch state.

The implementation of the Scan Initiator

The internals of the Scan Initiator are depicted in figure 3.20.

Whenever the start scan reg register is written to by the computer, the Control Gateway
asserts the corresponding register-attention signal for one clock cycle. This signal is routed
to the start input of the Scan Initiator, and initiates the start of a new scan or intra-scan.
At the first rising edge of the clock that follows the start signal being asserted, all of the
components on the left side of figure 3.20 respond to it, as follows.

• Register EReg1 latches a snapshot of the configuration register values from its config
input, and makes them available to the other components of the State Generator as
single byte, or aggregated multi-byte configuration signals.

• The remaining components control the run acq and run rx output signals, whose re-
quirements have already been discussed in the overview of the Scan Initiator. Initially,

48

Figure 3.20: The Scan Initiator

49

the start signal loads countdown delays into EventCounter1 and EventCounter2, and
starts Latch1 waiting for the next 1-second tick (if the sync flag of the start scan reg
register is asserted). Loading a finite value into EventCounter1, causes both the run rx
and run acq output signals to be deasserted on the next rising edge of the clock.
EventCounter1 thereafter counts down by 1, every clock cycle, and thus maintains
the run rx and run acq signals deasserted, at least until it’s count reaches zero. Once
it does reach zero, the states of the idle signal and the output of Latch1 determine
when the run rx signal becomes asserted again. In particular, it becomes asserted
when the idle input indicates that the Data Dispatcher has finished sending any data
that was in the process of being sent, and when Latch1 indicates that either no 1-
second synchronization was needed, or that the requested 1-second tick has been seen.
Once both of these conditions have been met, the asserted run rx output, fed back to
the rightmost input of OR gate O1, stops subsequent changes to the state of the idle
input from affecting the run rx output (or the run acq output), until the next start
pulse forces the output of Latch2 low again. Thus the run rx output remains asserted
until the next write to the start scan reg register.

Once the run rx signal has been asserted, EventCounter2 starts counting down the
round-trip control delay. When this counter reaches zero, the run acq output becomes
asserted. Thus the run acq output signal becomes asserted one round-trip delay af-
ter the run rx signal, and stays asserted until the next write to the start scan reg
register.

3.3.2 The Receiver Controller

The Receiver Controller controls the phase-switch and calibration-diode control lines that go
to the receiver. It also handles the requesting and receipt of multi-integration calibration-
diode configurations from the computer, and the assignment of these configurations to suc-
cessive groups of integrations. In addition, it generates the cal-diode stability flag that is
placed in the data-header that the Data Dispatcher subsequently sends to the computer, plus
the interrupt-signal that signals the end of each integration period. The implementation of
the Receiver Controller is shown in figure 3.21.

The behaviors of most of the input signals to this module have already been described, in the
documentation of the Scan Initiator. Not mentioned so far, are the cal reg and cal attn
signals. The cal reg signal brings in the contents of the cal diode reg register (see ap-
pendix A), and the cal attn signal informs the Receiver Controller whenever the computer
writes to this register. The run signal, whose properties have already been described in
general, is inverted to form a preparation and hold signal, which is asserted during the time
between a new scan request being received by the Scan Initiator from the computer, and the
actual start of the scan. On the first rising clock edge that follows this period, the frozen
Scan Sequencer, Phase Sequencer and Cal Controller components all simultaneously proceed
with the new scan.

50

Figure 3.21: The Receiver Controller

51

Within the Receiver Controller, the Scan Sequencer generates ticks that announce the end of
each integration period, phase-switch cycle, and phase-switch state. The Cal Controller uses
the integration tick that this generates, to sequence the calibration diode control signals,
according to the incoming stream of cal-diode configurations, received via the cal reg regis-
ter. Similarly, the Phase Sequencer uses the phase-switching tick to cycle the phase-switching
control signals through the sequence of states specified in the scan flags reg configuration
register.

The Cal Controller also generates a stability flag, stable, that is used by the Dispatch
Controller to signal to the computer when the data that it is sending, is from an integration
period during which the calibration diodes were in stable states.

Similarly, the Phase Sequencer generates a blanking signal, after each switch transition.
However this signal is not used by the Receiver Controller, since it is designed for the copy
of this module in the Slave Controller.

The majority of the implementation of the Receiver Controller lies within the Scan Sequencer,
Cal Controller and Phase Sequencer components. These are described next.

The Scan Sequencer

The Scan Sequencer generates single-cycle ticks at the ends of each of the various types of
cycles within a scan, including a tick that marks the end of each phase-switch state, a tick
which marks the end of each phase-switch cycle, and a tick that marks the end of each
integration period. In addition, there is a similar tick which marks the start of all cycles at
the start of a new scan, and a time-stamp output which reports the length of time that has
passed since the start of the scan. This is all implemented as shown in figure 3.22.

Since the integration period is configured as a multiple of the phase-switch-cycle period,
and the latter period is always a multiple of the phase-switch-state period, the correspond-
ing ticks are generated by a cascaded chain of Metronome components (see section 3.4.5).
Metronome1 generates one state tick every state len clock cycles. Metronome2 generates
one phase tick every state len × nactive clock cycles, where nactive is the number of
active phase switches, as computed by MUX1. Metronome3 generates one integ tick every
state len× nactive× integ len clock cycles.

Since Metronome components introduce a pipeline delay of one clock cycle between their
step inputs and their tick outputs, latches 4,5 and 6 are needed to equalize the delays that
accumulate along the chain.

On the first rising clock edge that follows the load input going low, the counter in metronome1
counts down by one, indicating that one clock cycle has passed since the start of the scan.
Thus, relative to the input signals of metronome1, the start of the scan lies one clock cycle
before the first rising clock-edge at which the load input is seen to be low. However, the

52

Figure 3.22: The Scan Sequencer

53

pipeline delays of 1 clock cycle introduced by metronome1 and 2 clock cycles introduced by
latches 4 and 5, move the start of the scan, relative to the output ticks at the phase tick
output, to 2 clock cycles after the first rising clock-edge at which the load input is seen to be
low. Thus the start tick output, which marks the actual start of the scan, must been seen
to be high on the second rising clock-edge that follows the first rising clock-edge at which
the load input is seen to be low. This is the function of latches 1, 2 and 3.

In particular, latch1 generates a pulse that lasts from when the load input first goes low,
until just after the next rising edge of the clock. Latch2 converts this into a pulse that lasts
precisely one clock cycle, lasting from just after the first rising clock-edge that follows the
load input going low, to just after the following rising clock-edge. Latch3 delays this pulse
for a further clock cycle, such that 2 clock cycles after the rising-edge at which the load
input is first seen to have gone low, the start tick output is high.

The intervals between the ticks generated by the metronomes are loaded just before the start
of a new scan, by asserting the load input for at least one clock cycle. While this input
remains asserted, the metronomes load new values at each rising clock edge. They don’t
start counting down until the first rising clock edge after the load input is deasserted. Thus
the load signal is intended to be used not only to load a new scan configuration, but also to
prevent the metronomes from running until the load input is deasserted at the actual start
of the scan. As explained above, the actual start of the scan occurs 2 clock cycles after the
first rising clock edge that follows the load input going low. Assuming that the load input
is generated synchronously by a latch, this actually means that there is a delay of 3 clock
cycles between said latch starting to pull its output low, and the start of the new scan.

Event Counter1 counts the number of clock cycles that have elapsed since the start of the
scan, for use by the Data Dispatcher for time-stamping integration periods. This counter is
synchronously cleared for the start of the scan, by latching zero from its d input at the same
time as latch3 is latching the start tick output. Thus it is zero when the start tick
output is asserted.

The Cal Controller

The Cal Controller component is responsible for maintaining a queue of per-integration
calibration-diode states, queued in the order that the computer writes them to the 8-bit
cal diode reg register. At the first integration of a new scan, the oldest value in this queue
is popped from the queue, and split into its functional parts, which are then held in latches
within other components. The 2 latched lsbs are immediately used to command the states
of the calibration diodes, for as many integration periods as are specified in the remaining
6 bits of the latched value. After that many integrations have passed, the next oldest value
is popped from the queue, and the cycle continues. Whenever space becomes available in
the queue, the Cal Controller prompts the computer to send another value, by sending it a
cal intr interrupt.

54

While preparing to start a new scan, the queue is cleared, and a cal intr interrupt is sent
to the computer, to tell it to send the first queue entry of the new scan. In the case of
a normal observing scan, start-scan commands are sent by the computer from the 1PPS
interrupt handler, one second before the 1 second tick at which the scan should start. Thus
the computer has up to a second to receive and respond to at least one cal intr interrupt
before the Cal Controller tries to pop the oldest entry from the queue. This should be plenty
of time. On the other hand, intra-scan commands aren’t synchronized with the 1 second
tick, and are required to start as soon as possible after receiving the start-scan command. In
this case it is likely that the queue will still be empty by the time that the first integration
starts. As a result, the calibration diodes will usually remain in their pre-scan states for
the first integration of an intra-scan. The informational header that is subsequently sent
to the computer, along with the integrated or dump-mode data, will indicate this via its
calibration-diode status bits, so this shouldn’t be a problem. Similarly, if the computer
unexpectedly fails to keep the queue from emptying at any time, the cal diodes will be held
in their existing states until a new configuration value is written to the queue, and the data
headers will indicate this to the CCB manager.

At the start of each integration, the Cal Controller is also responsible for generating a flag
that indicates whether the calibration diodes had had time to settle by the start of that
integration.

The implementation of the Cal Controller is shown in figure 3.23.

The queue of values written to the cal diode reg register, are held in FIFO1. This receives
one new value at a time, whenever the Control Gateway asserts the cal attn input, for one
clock cycle. AND gate A3 is a precaution to prevent any attempt to push a new value into
the FIFO, when it is full. In practice this shouldn’t happen, since the computer is only
supposed to write a new value into the cal diode reg register when it receives a cal intr
interrupt; and latches 1 and 2 ensure that this interrupt is only generated when the FIFO
has room for at least one new value.

Latch 1 is asserted to request that a single cal intr interrupt be sent to the computer.
It stays high until, in response, the computer writes a new value into the cal diode reg
register. It then goes low for the following clock cycle. If the full output of FIFO1 indicates
that there is still room for another value, the output of latch 1 again becomes asserted, and
remains asserted until the corresponding value is received. Whereas the output of latch 1
remains high between requesting a cal intr interrupt and receiving a new value from the
computer, latch 2 generates a pulse lasting precisely one clock cycle, each time that the
output of latch 1 goes high for at least one clock cycle. This accommodates the interface
requirements of the Control Gateway for requesting a single interrupt.

Whenever a new value is popped from the output of FIFO1, at the start of a new integration,
different bits of this value are latched by Event Counter1, and Cal Switchers 1 and 2.
In particular, the event counter reinitializes its count with the top 6 bits, which contain
an integer specifying for how many integrations the new calibration-diode states should

55

Figure 3.23: The Cal Controller

56

be commanded, while the two Cal Switcher components latch the corresponding single-bit
target states of the calibration diodes for these integrations. Subsequently, at the start of
each integration, Event Counter1 counts down by 1, unless the count has fallen to 1, or been
reset to zero. In the latter two cases, a new value is popped from the output of FIFO1, and
the cycle continues. Note that the countdown normally goes down to 1, rather than zero,
because when the initial count is loaded into the counter, it is not decremented to account
for the integration that starts at that point.

If FIFO1 is found to be empty when a new value is needed, neither the counter nor the Cal
Switcher components latch a new value from the output of the FIFO, and the FIFO is not
clocked. Thus the counter remains at 1 or zero, and the Cal Switcher components continue
to drive the previous cal-diode states, until the next integration at which FIFO1 is found to
be no longer empty.

Just before the start of a new scan, the prepare input of the Cal Controller is asserted by
its parent module for at least one clock cycle, until the new scan actually starts. Latch3
and AND gate A4 generate a pulse of one clock-cycle when this signal is first asserted. This
clears the FIFO, the interrupt-request latches, and Event Counter1, for the new scan, then
on the next clock cycle, allows them to start accepting new cal-diode information from the
computer, in preparation for the new scan. The Cal Switcher components aren’t reset by
this signal, since they need to retain knowledge of the current calibration-diode states in
order to compute settling times, and in order not to switch the diodes to arbitrary states
during the setup preceding the new scan.

Note that Cal Switcher components 1 and 2 see the target cal-diode states of the next entry
in the FIFO at least one clock cycle in advance of them being latched by the signal that
pops them from the FIFO. This allows the Cal Switcher components to determine in advance,
whether there will be a switch transition which will make the diodes unstable when the next
value is popped from the FIFO. This is necessary to allow the stability flags to be latched
to the stable outputs of the Cal Switcher components on the same clock edge that the
new cal-diode states are popped from the FIFO, and latched to the corresponding actual
outputs of these components. As a result, both the stable and actual outputs are latched
by the rising clock-edge that occurs during the one-clock-cycle pulse that comes from OR
gate O1, at the start of each integration period.

The implementation of the Cal Switcher components, is shown in figure 3.24.

Each Cal Switcher component is responsible for driving one calibration diode. At the be-
ginning of every integration, the update input of the Cal Switcher is asserted for one clock
cycle. This tells the Cal Switcher to update the stable output to indicate whether the latest
settling-time countdown has reached zero or not. Similarly, the load output is also asserted
for one clock cycle at the start of some integrations, but unlike the update input, this only
happens at the start of integrations where a new cal-diode state has been popped from the
FIFO of the parent Cal Controller module. This signal thus tells the Cal Switcher module to
load the new cal-diode state, and update the settling-time countdown to reflect any resulting

57

Figure 3.24: The Cal Switcher

58

change in the cal-diode state.

On the left of the diagram, AND gates A1 and A2 compare the currently commanded state
of the calibration diode, as presented at the actual output, to the next state in the queue
of the Cal Controller, which is taken from the pending input. According to the result of
this comparison, multiplexer MUX1 outputs the settling time that would correspond to the
change in the state of the calibration diode, if this change were to happen at the start
of the next clock-cycle. Specifically, if the diode would be switched from off to on, then
the rise-time specified by the rise dt input is output by MUX1. Alternatively, if the diode
would be switched from on to off, then MUX1 outputs the fall-time specified by the fall dt
input. Finally, if the diode’s state would remain unchanged, then MUX1 outputs any residual
settling-time countdown from the last change in state. In other words the output of MUX1 is a
continually updated estimate of the settling time, ready a clock cycle in advance of whenever
it is actually needed.

A new settling time is loaded into Event Counter1 whenever the load input indicates that
a new calibration diode-state has been loaded from the FIFO in the parent Cal Controller
module. Thereafter, it counts down by one at the start of each clock cycle. If it gets to zero
before a new value is next popped from the Cal COntroller’s FIFO, then it stops counting
at zero, and the zero count indicates that the diode has settled.

The stability flag is updated at the start of each integration, by looking at the residual
settling-time count. If the residual settling-time is zero, then the diode has settled, and the
stable output becomes asserted. Otherwise, it is set to zero, to indicate that the diode is
still turning on or off. The appropriate source of the residual settling time, to use for this
purpose, depends on whether a new cal-diode value is currently being loaded. When no new
value is being loaded, the residual count output of Event Counter1 is used directly. When
a new value is being loaded, the output of the counter still shows the residual count from
the previous cal-diode transition, so instead the settling down countdown of the transition
that is just starting, is taken from the output of MUX1. Selection between these two sources
is the purpose of MUX2. Note that the reason that we can’t always make MUX1 the source of
the residual count, is because the pending input that determines MUX1’s output, represents
a future switch transition, which may not occur for a few more integrations, depending on
how many integrations the current states were configured to last. Thus the output of MUX1
is only valid when the load input is asserted.

The Phase Sequencer

The Phase Sequencer generates the control signals that command both the receiver phase
switches and the routing of ADC samples to the corresponding integration bins. It also
generates the flag that is used to blank ADC samples that are taken while the phase switches
are changing state.

During a given scan, the phase switches cycle through a fixed set of states. The number and

59

choice of states is determined by the number of active phase switches, as follows.

• When both phase switches are active

When both phase switches are configured to be active, a 4 state cyclic gray-code
sequence is followed, since this means that only one switch changes state at a time,
and thus minimizes the maximum switching rate required of the individual switches.

At the start of the first integration, and thereafter, at the start of each new phase-
switch cycle, the switches are commanded to initial states that are specified by a scan
configuration parameter. Accommodating this initial state, while retaining the cyclic
gray-code sequence, simply involves starting the gray-code cycle at the point in its
cycle where these states are found.

• When only one phase switch is active

When one switch is configured to be inactive, that switch is commanded to retain a
single state throughout the scan. This state is determined by the scan-configuration
parameter which sets the initial state of that phase switch at the start of each phase-
switching cycle.

The other switch is toggled on and off on successive states within the phase-switching
cycle.

• When neither phase switch is active

When both phase switches are configured to be inactive, both switches are perpetually
commanded to maintain the initial states specified in the configuration of the scan.

The implementation of the Phase Sequencer is shown in figure 3.25.

In this diagram, multiplexer MUX1 outputs the sequence of phase-switch states that corre-
sponds to one of 16 phase-switching cycles; selected according to which phase-switches are
active, and what their initial states within this cycle should be. The lower 4 bits of this
sequence denote the sequence of states for phase switch A, while the remaining top 4 bits
specify the corresponding parallel sequence of states for phase-switch B.

The address input of multiplexer MUX1 is formed from the active a and active b inputs of
the Phase Sequencer, which signal whether switches A and B are to be active or not, and the
closed a and closed b inputs, which signal whether these switches should start off closed
at the beginning of each phase-switch cycle, or on.

Before the first integration of a new scan, the load input-signal is asserted for one or more
clock cycles. This loads the two parts of the phase-switching sequence output by MUX1, into
two 4-bit PISOs. The serial outputs of these PISOs are connected back to their serial inputs,
such that clocking them continuously rotates the sequence of states within the PISO, while
presenting each successive state at the serial outputs. The PISOs are clocked once each
time that the phase tick input of the Phase Sequencer is asserted for one clock cycle. The

60

Figure 3.25: The Phase Sequencer

61

sequence starts on the rising clock-edge that occurs during the single clock-cycle pulse at the
start tick input, which happens at the official start of the scan, a few clock cycles after
the load input is deasserted.

At the start of a new scan, and whenever the PISOs are clocked to command a new pair of
phase-switch states, if either switch is configured to be switching, Event Counter1 is loaded
with the phase-switch blanking time, provided in the scan configuration. Thereafter, this
counter counts down by one at the start of each clock cycle, until it reaches zero. While it
remains non-zero, the blank output is asserted, to tell the slave FPGAs to discard any ADC
samples that are acquired during this time. Thus ADC samples that are acquired while
either phase switch is in the midst of changing state, are excluded from the integrated data.

3.3.3 The Slave Controller

The Slave Controller generates the set of signals that control how and when the four slave
FPGAs acquire and optionally integrate data arriving from the receivers. The implementa-
tion of the Slave Controller is shown in figure 3.26.

Figure 3.26: The Slave Controller

The Scan Sequencer and Phase Sequencer modules have already been documented in sec-
tions 3.3.2 and 3.3.2, respectively. However, whereas in the Receiver Controller module, the
phase output of the Phase Sequencer is always used to command the states of the phase-
switches; in the Slave Controller it is usually used to route the resulting samples to the

62

corresponding phase-switch bins. In addition, in dump mode, it is ignored entirely, because
in this mode there is no integration into phase-switch bins, and instead multiplexer MUX1 sub-
stitutes the address of the ADC whose samples are to be dumped. Similarly, whereas in the
Receiver Controller, the blank output of the Phase Sequencer is ignored; in the Slave Con-
troller, it is passed on to the slaves, to command them to drop samples during phase-switch
transitions.

The dump output signal of the Slave Controller, is taken directly from the configuration flags
register associated with the scan. When asserted, this flag switches the slaves into dump
mode. In this mode, one slave is selected for readout by the Data Dispatcher, and the phase
outputs identify a particular ADC whose raw samples must be presented, one at a time, on
the data bus, for collection by the Data Dispatcher.

Similarly, the test output signal is taken from the scan’s configuration flags register. When
asserted, this flag tells all of the slaves to integrate or dump faked pseudo-random samples
instead of the real ADC samples.

The start acq output signal is asserted for one clock cycle at the start of each integration
period. This tells the slaves to clear their integration accumulators, after transferring the
previous contents of these accumulators to readout queues within the slaves. It also resets
the pseudo-random sample-generator that is used when the test flag is asserted.

3.3.4 The Dispatch Controller

The Dispatch Controller controls the Data Dispatcher module. It tells it when to start
collecting and transmitting the data of a new integration period to the computer. It also
presents the Data Dispatcher with appropriately timed header information to send to the
computer, along with the data of each integration period.

The implementation of the Dispatch Controller is shown in figure 3.27.

As in the Receiver Controller and Slave Controller, the timing signals of the Dispatch Con-
troller are generated by a Scan Sequencer module. In particular, at the start of each integra-
tion, this causes Event Counter1 to increment by one, after being initially zeroed before the
start of the scan. Thus at the start of each integration, the output count of Event Counter1
denotes the ordinal number of the following integration period. This is one of the required
header items.

Before discussing the functions of the other components in this schematic, it is necessary to
explain a fundamental difference in the timing of data collection in dump-mode and normal
integration-mode.

• In dump mode, raw samples start to be collected by the Data Dispatcher, and dis-
patched to the computer, at the start of each integration period. This means that

63

Figure 3.27: The Dispatch Controller

64

Dispatch Controller must present the Data Dispatcher with configuration and header
information that is pertinent to the integration period that is just starting.

• In normal integration mode, on the other hand, the slaves integrate samples for a whole
integration period, before the Data Dispatcher collects them and dispatches them to
the computer. This means that Dispatch Controller must present the Data Dispatcher
with configuration and header information that is pertinent to the integration period
that has just ended.

To accommodate both of these conflicting requirements, the Dispatch Controller uses register
EReg1 to gather header and configuration information at the start of each integration period,
while simultaneously transferring a copy of the previous contents of EReg1 to EReg2. Thus
one clock cycle after the start of each new integration period, EReg1 contains the configu-
ration and header information of the period that is just starting, while EReg2 contains the
configuration and header information of the period that just ended. Multiplexer MUX1 selects
which of these to actually pass on to the Data Dispatcher, according to whether dump mode
is in effect of not.

Since the Data Dispatcher takes 2 clock cycles from the start of each integration to actually
start using the above information, the information is safely presented one clock cycle in
advance of when it is first used.

The start snd output is asserted for one clock cycle to tell the Data Dispatcher to start
collecting data from the slaves, and dispatch them to the computer. In dump mode, this
should occur at the start of each integration period, whereas in normal integration mode, it
should occur at the end of each integration period. However, since the end of one integration
period is also the start of the next integration period, the integration tick from the Scan
Sequencer is used to generate start snd pulses both in dump mode and normal integration
mode, with the exception of the starting pulse of the first dump-mode integration period.
The latter pulse is generated by the start tick output of the Scan Sequencer, which is
generated at the start of the first integration of the scan.

To satisfy the requirements of the Scan Initiator, documented in section 3.3.1, AND gate A2
ensures that a new output frame will not be started unless the run input signal is asserted.

3.3.5 The 1PPS Gateway

The external GBT 1PPS signal is a train of 1µs pulses, with a period of 1 second, and an
amplitude of 4V. Each pulse signals the start of a new second of UT. The job of the 1PPS
gateway is to convert each 1µs pulse into a pulse whose rising edge coincides with a rising
edge of the FPGA clock, and whose duration is a single FPGA clock cycle. The circuit
shown in figure 3.28 does this.

Since the 1PPS input signal isn’t synchronous with the FPGA clock, latch 1 is used both to

65

Figure 3.28: The 1PPS Gateway

synchronize the signal, and to allow one clock cycle for any metastable state in latch 1 to
settle before latches 2 and 3 sample its output. Thus, one clock cycle after latch 1 latches
the start of a new 1PPS pulse to its q output, latches 2 and 3 both latch a high value to their
q outputs. On the following clock cycle, the q output of latch 2 is low, so latch 3 latches
a low value to its output. Thus latch 3’s q output goes high for precisely one clock cycle,
regardless of how much longer the external input pulse lasts. Clearly, the rising edge of latch
3 trails the rising edge of the external 1PPS signal by between one and 2 FPGA clock cycles.
This translates to a maximum delay of 0.2µs, which is an insignificantly small fraction of
the CCB’s 1ms minimum integration time.

3.3.6 Clock Conditioner

The Clock Conditioner takes the externally provided Green Bank 10MHz clock signal and
converts it into two 10MHz clock signals, one being the main clock signal used to clock the
logic within all of the FPGAs, and the other being a phase-shifted copy of this clock signal,
used for clocking the ADCs. Both of these clock signals are conditioned to have 50% duty
cycles.

Ideally, both the job of conditioning the main clock to have a 50% duty cycle, and the job of
generating a phase-shifted version of this clock, would be performed by using the DLLs (Delay
Locked Loops) provided in the Spartan-3 DCMs (Digital Clock Managers). Unfortunately,
it turns out that these DLLs have a minimum clock frequency of 24MHz, meaning that they
can’t be used to condition the 10MHz clock frequency of the CCB. Fortunately, the DFS
(Digital Frequency Synthesis) modules in the same DCMs don’t have this restriction, and
although these can only perform frequency multiplication, and duty-cycle correction, these
features are sufficient for generating the two clock signals.

The basic idea is to take the 10MHz Green Bank reference signal, use a DFS to generate

66

Figure 3.29: The Clock Conditioner

a 100MHz signal, divide this back down to 10MHz, to form the main duty-cycle-corrected
FPGA clock signal, and delay this by a configurable number of 100MHz (10ns) clock cycles,
to generate the phase-shifted ADC clock signal. The implementation is shown in figure 3.29.

In the diagram, buffer B1 is the input-buffer of the global clock pin at which the Green Bank
10MHz reference signal enters the master FPGA. Buffers B2 and B3 are global clock buffers,
which connect the two output clock signals to, to separate global clock networks within the
master FPGA.

The DFS in digital Clock Manager, DCM1, is configured to multiply the frequency of the
10MHz clock signal, presented at its clkin input, by 10, and present the resulting 100MHz
clock signal at its clkfx output. The only static configuration parameters of DCM1 that need
to be changed from their default values, are the following.

• CLK FEEDBACK = None

This turns off the DLL by disabling its feedback path. This is necessary since the input
frequency is too low for the DLL to lock.

• CLKFX MULTIPLY = 10

This is the factor of 10 by which to multiply the input 10MHz clock-signal.

• LOC = TBD

67

Spartan-3 FPGAs contain 4 DCMs, each one located in a different physical corner of
the FPGA. The LOC parameter specifies which one of the DCMs to use, and should be
chosen to use the DCM closest to whichever pin is used for the clock input.

The 100MHz signal generated at the clkfx output, is used to clock the contents of a SIPO
(Serial-In, Parallel Out) shift register. This shift register is used both to divide the signal
back down to 10MHz, and to generate the 10 possible 10ns delays, as follows. In general, any
SIPO (Serial-In, Parallel Out) shift register with at least N stages, can be used to divide the
frequency of its shifting clock by 2N , and present N differently delayed copies of this output.
In particular, if the outputs of the successive stages of the shift-register are labeled q

0
...q
N−1
,

then at the start of each input clock cycle, the serial input, sin, of the shift register must
be given by,

sin = q
0
q
1
...q

N−1
+ q

0
(q
1
q
2
...q

N−1
) (3.1)

where as usual, logical AND is represented by multiplication, and logical OR is represented
by summation. This equation is easy to understand when one realizes that the contents of
the N stages represent half of the output clock-period. Basically, the equation keeps feeding
the shift register input with the same value as it did on the previous clock cycle, except on
the clock cycles when it sees that all of the stages have the same values, at which point it
feeds the opposite value into the shift register, to start the next half of the output clock
cycle. Note that if any of the shift-register stages somehow get toggled into an incorrect
state, say by a power-glitch, then although initially this will generate a corresponding glitch
in the output clock signal, the properties of the above equation are such that a clean clock
signal will be restored within at most N − 1 clock cycles, with the only lasting effect being
a constant shift in the arbitrary phase origin.

So, to divide the 100MHz clock frequency by 10, we need a SIPO with at least 5 stages.
This will generate 5 delayed versions of the divided 100MHz clock, with delays every 10ns
over the range 0ns...40ns. Since this only covers half a clock cycle, whereas we need a full
clock cycle, a SIPO of 10 stages is actually needed to provide 5 more delay taps. Thus in
figure 3.29, the first 5 stages of a 10 stage SIPO are used, along with gates A1, A2, A3 and
O1, to implement equation 3.1, while both these 5 initial stages, plus the remaining 5 stages,
are used to generate delayed versions of the divided clock signal, every 10ns, over the range
0ns...90ns.

There are three reasons for delaying the ADC clock signal relative to the main FPGA clock
signal.

• One reason to delay the ADC clock signal is to accomodate the delay between the ADC
clock edge, and data being output by the ADC. The data-sheet of the AD9240 ADC
says that the time taken between the rising clock edge at the ADC clock input, and a
valid new sample being available at the ADC data outputs, ranges from between 8ns

68

and 19ns. Thus the rising FPGA clock-edge that is used to latch these outputs into
the slave FPGAs, must occur more than 19ns after the rising ADC clock edge.

• Another reason to delay the ADC clock, is to arrange that the noisy period around
the active edge of the FPGA clock, not occur while the ADC is at its most sensitive
to external noise.

• Finally, potential clock-skew problems can be remedied by modifying the ADC clock-
delay.

Since the optimal ADC clock delay will need to be determined empirically, MUX1 allows
any of the 10 delays to be selected dynamically, according to the address contained in the
adc delay reg register. Since the 4-bit MUX can select between 16 values, whereas there
are only 10 possible delays, the MUX address is interpretted modulo 10, with the highest 6
addresses thus selecting the same delays as the lowest 6 addresses. As such, the value of the
adc delay reg register selects the delay as a multiple of 10ns, modulo 100ns.

A reasonable starting point for the value of the adc delay reg register would be 2, to select
a 20ns delay. This would leave 20ns for all FPGA operations to cease, after each rising edge
of the FPGA clock, followed by a 80ns quiet period, during which the ADC would take up
to 20ns to output its previous value, while simultaneously starting to measure its next value.

3.4 Custom generic components

The components that are described in this section are custom components that are used in
more than one part of the CCB.

3.4.1 The ELatch component

There are many occasions when one wants to latch values synchronously with the clock, but
only at particular clock cycles. The naive way to handle this is to AND the clock signal going
to the edge-sensitive input of a latch, with an enabling signal. The problem with this is that
if your clock-enabling signal is itself generated by the output of a synchronous latch, whose
output changes just after the rising edge of the clock, then the output of the AND gate may
end up generating a small glitch between the rising edge of the clock signal and the rising
edge of the enabling signal, and this glitch will either cause the following latch to erroneously
latch its input, or it will push the latch into a metastable state, due to the shortness of the
glitch. Although one could work around this by using a negative edge-triggered latch to
assert the enabling signal before the rising edge of the clock, this can lead to conflicts with
other components that need the same enabling signal to be generated synchronous with the
rising edge of the clock. The use of both active edges also doubles the amount of time that

69

the FPGA generates switching transients, and thus would make it harder to find a quiet
time for the ADCs to capture their inputs.

The solution to this problem is to implement a latch with an enable input, containing an
embedded D-type latch that always captures its input value at the rising edge of the clock,
but with a multiplexer in front of its input, which simply directs the existing value of the
latch back to this input, when the latch value should remain unchanged. The implementation
is shown in figure 3.30, where the input-enable input is labeled ien.

Figure 3.30: A D-type latch with a synchronous input-enable input

3.4.2 The EReg component

The EReg component is simply a multi-input version of the ELatch component described
in section 3.4.1. Thus it is simply a synchronous register with a synchronous enable input
(ien). Its implementation is shown in figure 3.31.

3.4.3 The CCB PISO component

Conventional PISO (Parallel In Serial Out) components respond to the active edge of the
clock by either loading parallel data, or shifting out serial data, depending on the state of a
single load/shift input. The problem with this is that without disabling the clock input,
one can’t keep the contents of the PISO unchanged for one or more clock cycles. Disabling
the clock isn’t as trivial as it sounds. The only reliable way to do it without introducing false
clock edges, is to use a latch, triggered off the opposite edge of the clock, to enable or disable
the clock signal while it is known to be low. This, unfortunately means that the enabling
signal is sampled half a clock cycle earlier than the normal load/shift input, which can
break timing expectations.

70

Figure 3.31: A register with a synchronous input-enable input

A better method is to create a custom PISO with the following properties. The PISO should
have separate load-enable and shift-enable inputs, rather than one combined load/shift
input, such that there can be more choices than just shifting or loading. As in the conven-
tional PISO, these inputs should be acted on at the active edge of the clock, but unlike a
normal PISO, the contents of the PISO should remain unchanged unless at least one of them
is asserted.

A single node of such a PISO is shown in figure 3.32.

Figure 3.32: One node of a CCB PISO component

Note that the parameter WIDTH specifies the number of bits serially shifted in and out of the
serial inputs and outputs, si and so, or parallel-loaded via the d input. At the rising edge of

71

the clock, the PISO performs the following operations, according to the states of the shift
and load inputs.

• load=0, shift=0

When neither of the enable inputs are asserted, multiplexer MUX1 routes the current
value of register Reg1 back to its input, such that the contents of the latch remain
unchanged.

• load=0, shift=1

When just the shift input is asserted, multiplexer MUX1 routes the value at the serial-
in (si) input to the input of the register Reg1, such that the contents of the register
are replaced by whatever value is at the si input. Usually this input is connected to
the so output of the previous node in the PISO.

• load=1, shift=0 or 1

Whenever the load input is asserted, regardless of the state of the shift input, mul-
tiplexer MUX1 routes the value at the d input of the node to the input of register Reg1.
Thus the contents of the register get replaced with whatever value was at the d input
of the node.

CCB PISO Nodes are strung together in a chain to form a PISO, as shown in figure 3.33.

The width of the PISO nodes is set by the WID parameter, while the number of nodes in the
PISO, is set by the LEN parameter.

3.4.4 The Event Counter component

In several places a counter is required that does one of 4 things synchronously with the rising
edge of the clock, and does nothing at any other time. These things are:

• Load a new count into the counter if the sload input is asserted, regardless of the
states of the up and down inputs.

• Increment the output of the counter by 1 if the up input is asserted, and neither the
sload nor the down inputs are asserted.

• Decrement the output of the counter by 1 if the down input is asserted, and neither
the sload nor the up inputs are asserted.

• Leave the output count unchanged if none of the sload, up or down inputs are asserted.

72

Figure 3.33: A complete CCB PISO component

73

The Event Counter component, shown in figure 3.34, shows the inputs and outputs of this
counter.

Figure 3.34: An up/down counter with synchronous parallel load capability

The VHDL code shown in figure 3.35 is an example of how this counter could be implemented,
assuming that there isn’t anything equivalent in Xilinx’s library of counters.

Note that this is one case where using VHDL makes much more sense than schematic capture,
because of the VHDL addition and subtraction operators, which take advantage of the fast-
carry networks built into Spartan 3 FPGAs.

3.4.5 The Metronome component

Metronome components periodically generate a pulse, one clock-cycle in length, every time
that they have synchronously counted a specified number of events at their step input. They
are implemented by the circuit shown in figure 3.36,

The period between pulses must initially be set by asserting the load input for one or more
clock cycles. This takes the period, specified by the nstep input, uses it to set the initial
count of the counter, and copies it into register EReg1. The value of this register is thereafter
used to reload the counter for a new countdown after each output tick.

The terminal count at which the component outputs a pulse, and prepares to reload its
internal counter, depends on whether the step input was asserted when the counter last
reloaded itself. If it was asserted, then the reload operation will have masked one countdown
event, and the count should only go down to 1, whereas if it wasn’t asserted, then the reload
didn’t represent a countdown event, and the count should go all the way down to 0. NOR
gate N1 generates the terminating output pulse when the most significant WID-1 bits of the

74

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

entity event_counter is

generic(WID: std_logic_vector := 16);

port(

clk, sload, clear, up, down: in std_logic;

d, q: out std_logic_vector(WID-1 downto 0)

);

end event_counter

architecture event_counter_arch of event_counter is

begin -- event_counter_arch

signal tmp : std_logic_vector(WID-1 downto 0);

begin

process(clk, clear)

begin -- process

if(clear=’1’) then

tmp <= (others => ’0’);

elseif(clk’event and clk=’1’) then

if(sload=’1’) then

tmp <= d;

elsif(up=’1’ and down=’0’) then

tmp <= tmp + 1;

elsif(down=’1’ and up=’0’) then

tmp <= tmp - 1;

end if

end if

end process;

q <= tmp;

end event_counter_arch;

Figure 3.35: A VHDL implementation of the Event Counter component

75

Figure 3.36: The Metronome periodic pulse-generator

76

output count are all zero, and the least significant bit AND’d with q is zero. Thus when the
step input was asserted during the previous reload of the counter, q is zero, and the counter
thus stops at 1, whereas when the step input was not asserted during the previous reload
of the counter, q is 1, and the counter doesn’t stop until 0.

The output pulse of the Metronome component is also used internally, to reload the counter
for the next count-down interval, via the synchronous sload input of the counter. At this
time, the counter is preset to the value stored in Ereg1, rather than from the external nstep
input.

While the load input signal is asserted, the counter is held with the value of its nstep input,
which is the value that it normally has one clock cycle after outputting a tick. During this
time, the signal at the step input, is ignored. The step input is not heeded until the first
rising clock edge that follows the load input going low, at which point it causes the counter
to count down, if it is asserted. Beware that there is a pipeline delay of one clock cycle
between a synchronously generated pulse at the step input, and any corresponding change
in the tick output.

77

Appendix A

CCB control and configuration

registers

The CCB firmware is controlled and configured by a set of 8-bit registers written to via the
EPP parallel port of the CCB control computer. The computer interface to these registers
is implemented by the Control Gateway, and their values are used by the State Generator.
Whereas all registers are treated identically by the Control Gateway, the State Generator
divides them into “action” and “configuration” registers.

When an action register is written to by the computer, the State Generator immediately
does something in response. An example is the register whose value tells the FPGA to start
a new scan or intra-scan. In this case the attention signal of the action register sets off the
action, while the register value contains any information associated with the command.

When a configuration register is written to, the attention signal of the register is ignored,
since the updated configuration isn’t relevant until a new scan is started. To prevent con-
figuration updates from affecting the current scan, the configuration registers in the Control
Gateway are only copied into working registers within the State Generator at the start of
each new scan.

A summary of all of the registers is given in table A.1.

The list of action registers

• start scan reg – Start a new scan or intra-scan.

Whenever this register is written to by the computer, the State Generator first halts
any existing scan, then, depending on the revised contents of the register, starts a new
one, either immediately, or at the start of the next second.

78

Name Type Address of MSB Address of LSB
start scan reg action 00 00
cal diode reg action 01 01
scan flags reg config 02 02
state len reg config 03 04
blank dt reg config 05 05
diode rise reg config 06 09
diode fall reg config 10 11
integ len reg config 12 13
roundtrip dt reg config 14 14
holdoff dt reg config 15 15
dump adc reg config 16 16
dump lim reg config 17 18
adc delay reg config 19 19
scan id reg config 20 23

Figure A.1: A list of all CCB registers

The bit assignments of the register are as follows.

Register The value of each bit
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
00 X X X X X X X sync

The meanings of the bit-value names are:

– sync

If 0, start the new scan as quickly as possible. If 1, start the new scan at the next
rising edge of the 1PPS signal.

– X

The value of this bit is currently unused, and should be assigned 0.

• cal diode reg – Queue a new cal-diode configuration.

Append one entry to the queue of future multi-integration calibration-diode configu-
rations. This register is to be written to whenever the computer receives a cal intr
interrupt. In particular, immediately after the computer writes to the start scan reg
register, to initiate a new scan, the master FPGA generates a cal intr CPU-interrupt
to ask the computer for the configuration of the first integration of the new scan. The
computer should then respond by writing the desired initial cal-diode states, and for
how many integrations these states should be commanded, in the cal diode reg reg-
ister. Thereafter, each time that a cal intr interrupt is received by the computer,
it should send the configuration of the next one or more integrations that follow the
integrations that were last configured in the previous write to cal diode reg.

79

Since the receipt of a cal intr interrupt is the only race-condition-free way that the
computer can reliably know when there is space for a new configuration byte within the
queue of cal-diode configurations, the computer must not write to the cal diode reg
register at any other time.

The configuration bits within the cal diode reg register are as follows.

Register The value of each bit
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
01 n5 n4 n3 n2 n1 n0 diode b diode a

Where the meanings of the bit-value names are:

– diode a

If 0, calibration diode A should be commanded off at the start of the target
integration. If 1, calibration diode A should be commanded on at the start of the
target integration.

– diode b

If 0, calibration diode B should be commanded off at the start of the target
integration. If 1, calibration diode B should be commanded on at the start of the
target integration.

– n0..n5

These bits together form a positive integer count, with bit n0 denoting the least
significant bit, and bit n5 denoting the most significant bit. This count specifies
for how many consecutive integrations the specified calibration diode states should
be used. Thus, up to 64 consecutive integrations can be configured to have the
same cal-diode state, in a single write to the cal diode reg register.

The list of configuration registers

• scan flags reg – Scan configuration flags.

This register contains miscellaneous scan-specific single-bit configuration flags.

The bit assignments of the register are as follows.

Register The value of each bit
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
02 X X close b close a switch b switch a dump test

The meanings of the bit-value names are:

– test

If 0, use real ADC samples as the input to the CCB. If 1, use pseudo-random fake
samples as the input to the CCB.

80

– dump

If 0, send integrated samples to the computer. If 1, send raw ADC samples to the
computer.

– switch a

If 0, phase-switch A should be held in the state specified by the close a bit, for
the duration of each phase-switch cycle. If 1, phase-switch A should be toggled
on and off during each phase-switch cycle.

– switch b

If 0, phase-switch B should be held in the state specified by the close b bit, for
the duration of each phase-switch cycle. If 1, phase-switch B should be toggled
on and off during each phase-switch cycle.

– close a

If 0, phase-switch A should be opened at the start of each phase-switch cycle. If
1, phase-switch A should be closed at the start of each phase-switch cycle.

– close b

If 0, phase-switch B should be opened at the start of each phase-switch cycle. If
1, phase-switch B should be closed at the start of each phase-switch cycle.

– X

The value of this bit is currently unused, and should be assigned 0.

• state len reg – The number of samples per phase-switch state.

This register specifies how long a single combination of phase-switches should last
within a a phase-switch cycle. It is expressed as a number of 100ns ADC samples,
and is a 16 bit number which extends across two 8-bit registers. It has minimum and
maximum supported values of 250 and 65535, which correspond to durations of 25µs
and 6.5ms.

The configuration bits within the state len reg register are as follows.

Register The value of each bit
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
03 b15 b14 b13 b12 b11 b10 b9 b8

04 b7 b6 b5 b4 b3 b2 b1 b0

The meanings of the bit-value names are:

– b0..b15

Bits 0 to 15 of the 16-bit number, with b0 denoting the least significant bit, and
b15 denoting the most significant bit.

• blank dt reg – The phase-switch settling time.

81

This register specifies how many 100ns ADC samples should be blanked to account for
the settling time of the phase switches. The duration occupies a single 8-bit register,
and thus allows for settling times of between 0 and 25.6µs.

The configuration bits within the blank dt reg register are as follows.

Register The value of each bit
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
05 b7 b6 b5 b4 b3 b2 b1 b0

The meanings of the bit-value names are:

– b0..b7

Bits 0 to 7 of the 8-bit number, with b0 denoting the least significant bit, and b7
denoting the most significant bit.

• diode rise reg – The rise-time of the cal diodes.

This register specifies how long it takes for the effects of turning a calibration diode on,
to stabilize to below the limits of detectability. It is expressed as a number of 100ns
ADC samples, and is a 32 bit number which extends across four 8-bit registers. The
use of 32 bits establishes a maximum rise-time of about 7 minutes. This will hopefully
be overkill, but the long duration allows for the potential that the diodes might need
a significant amount of time to respond thermally to the change in loading when they
are switched on.

The configuration bits within the diode rise reg register are as follows.

Register The value of each bit
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
06 b31 b30 b29 b28 b27 b26 b25 b24

07 b23 b22 b21 b20 b19 b18 b17 b16

08 b15 b14 b13 b12 b11 b10 b9 b8

09 b7 b6 b5 b4 b3 b2 b1 b0

The meanings of the bit-value names are:

– b0..b31

Bits 0 to 31 of the 32-bit number, with b0 denoting the least significant bit, and
b31 denoting the most significant bit.

• diode fall reg – The fall-time of the cal diodes.

This register specifies how long it takes for the effects of turning off a calibration diode
to stabilize to below the limits of detectability. It is expressed as a number of 100ns

82

ADC samples, and is a 16 bit number which extends across two 8-bit registers. The
use of 16 bits establishes a maximum diode fall-time of 6.6ms.

The configuration bits within the diode fall reg register are as follows.

Register The value of each bit
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
10 b15 b14 b13 b12 b11 b10 b9 b8

11 b7 b6 b5 b4 b3 b2 b1 b0

The meanings of the bit-value names are:

– b0..b15

Bits 0 to 15 of the 16-bit number, with b0 denoting the least significant bit, and
b15 denoting the most significant bit.

• integ len reg – The duration of an integration period.

This register specifies the duration of each integration, as a multiple of the currently
configured phase-switch cycle duration. This is a 16 bit value, which extends across
two 8-bit registers. Since phase-switch states are required to persist for no less than
25µs, and up to 32 states are allowed per phase-switch cycle, the use of 16 bits es-
tablishes a minimum maximum of 52 seconds per integration. This far exceeds the
roughly estimated 1 second duration at which a weak-signal would saturate the 32-bit
integration accumulators.

The configuration bits within the integ len reg register are as follows.

Register The value of each bit
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
12 b15 b14 b13 b12 b11 b10 b9 b8

13 b7 b6 b5 b4 b3 b2 b1 b0

The meanings of the bit-value names are:

– b0..b15

Bits 0 to 15 of the 16-bit number, with b0 denoting the least significant bit, and
b15 denoting the most significant bit.

• roundtrip dt reg – The CCB/receiver round-trip delay.

This register specifies an estimate of the length of time between the CCB toggling a
switch control-signal, and the first effects of this operation being seen in the detected
signal that arrives at the CCB. It should be on the short side of the actual estimated
value, such that samples from when the switch began changing the signal, don’t get
incorrectly included with the pre-switch samples.

While the actual number will have to be measured empirically, the major contributors
can be estimated, as follows.

83

– The opto-isolators that drive the receiver control signals are likely to contribute a
propagation delay of around 100ns, which corresponds to one FPGA clock cycle.

– Once the control signal arrives at the receiver, and the switches in the receiver
start to respond to it, the perturbed astronomical signal has to go through an
8-pole 2MHz Bessel low-pass filter in the receiver, which delays the perturbed
switched signal by 250ns.

– The next major contributor is the 4-stage pipeline in the ADCs delays, which add
another 300ns.

– The input latch in the slave FPGAs further delays the use of the digitized signal
by another 100ns.

Adding these figures up, one gets a lower bound of 750ns. In practice RFI filters, cables
etc, will add further delays, so 1µs seems like a reasonable estimate.

The roundtrip dt reg register is 8 bits wide, and expresses the delay as a multiple of
the 100ns ADC sampling interval. Thus the maximum supported round-trip delay is
25.6µs. The bit-assignments within the register are as follows.

Register The value of each bit
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
14 b7 b6 b5 b4 b3 b2 b1 b0

The meanings of the bit-value names are:

– b0..b7

Bits 0 to 7 of the 8-bit number, with b0 denoting the least significant bit, and b7
denoting the most significant bit.

• holdoff dt reg – The interrupt hold-off delay.

This register sets the maximum rate at which the CCB is allowed to generate interrupts,
expressed as the minimum interval between interrupts. It is a 5-bit number which has
1 added to it, before being scaled by 25.6µs, to arrive at the actual holdoff interval.
Thus the range of supported holdoff intervals is 25.6µs↔ 819.2µs

The configuration bits within the holdoff dt reg register are as follows.

Register The value of each bit
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
15 X X X b4 b3 b2 b1 b0

The meanings of the bit-value names are:

– b0..b4

Bits 0 to 4 of the 5-bit number, with b0 denoting the least significant bit, and b4
denoting the most significant bit.

84

– X

The value of this bit is currently unused, and should be assigned 0.

• dump adc reg – The ADC to sample in dump mode.

This register specifies which of the ADCs is to sampled when dump mode is enabled.
There are 16 ADCs, split equally between 4 slave FPGAs, so the specification of the
ADC is a 4 bit number with 2 bits specifying a slave FPGA, and 2 bits specifying a
particular ADC handled by that slave.

Specifically, the configuration bits within the dump adc reg register are as follows.

Register The value of each bit
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
16 X X X b4 slave1 slave0 sampler1 sampler0

The meanings of the bit-value names are:

– slave0..slave1

Bits 0 and 1 is the 2-bit ID of the slave that handles the target ADC.

– sampler0..sampler1

Bits 1 and 2 is the 2-bit ID of the sampler that samples the target ADC.

– X

The value of this bit is currently unused, and should be assigned 0.

• dump lim reg – The maximum number of dump-mode samples to collect per integra-
tion period.

When in dump mode, this register determines how many samples the CCB should
attempt to collect, per integration period, before sending these to the computer. The
actual number collected will be further limited to the size of the frame buffer.

The configuration bits within the dump lim reg register are as follows.

Register The value of each bit
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
17 b15 b14 b13 b12 b11 b10 b9 b8

18 b7 b6 b5 b4 b3 b2 b1 b0

The meanings of the bit-value names are:

– b0..b15

Bits b0 to b15 denote a 16-bit unsigned integer, with b0 being the least significant
bit. This integer specifies the maximum number of samples to attempt to collect,
per integration period.

85

• adc delay reg – The ADC clock-delay.

This register sets the delay between the rising edge of the main FPGA clock, and the
rising edge of the ADC clock.

The configuration bits within the adc delay reg register are as follows.

Register The value of each bit
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
19 X X X X b3 b2 b1 b0

The meanings of the bit-value names are:

– b0..b3

Bits b0 to b3 denote a 4-bit unsigned integer, with b0 being the least significant
bit. The ADC clock-delay is set to this number, modulo 10, multiplied by 10ns.

– X

The value of this bit is currently unused, and should be assigned 0.

• scan id reg – The ID to assign the scan.

This register specifies the identification number that is to be placed in the headers of
data frames that are taken during the scan that is being configured.

The configuration bits within the scan id reg register are as follows.

Register The value of each bit
address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
20 b31 b30 b29 b28 b27 b26 b25 b24

21 b23 b22 b21 b20 b19 b18 b17 b16

22 b15 b14 b13 b12 b11 b10 b9 b8

23 b7 b6 b5 b4 b3 b2 b1 b0

The meanings of the bit-value names are:

– b0..b31

Bits 0 to 31 of the 32-bit idenfication number, with b0 denoting the least significant
bit, and b31 denoting the most significant bit.

86

