
The Linux gpio-104 device-driver

[Document number: ??, revision 1]

Martin Shepherd
California Institute of Technology

November 2, 2005

This page intentionally left blank.

Abstract

The gpio-104 board is a PC/104 general-purpose I/O board. It provides 24-bits of digital
I/O, can digitize one-at-a-time of 8 input voltages, with 12-bit resolution, and generate 4
separate analog output voltages, each with 12-bit resolution.

The CCB uses 16 of the digital outputs to control front-panel LEDs, 1 of the digital outputs
to force a reload of the CCB firmware, and 3 digital outputs to select which CCB PCB is
currently to be sampled by the subset of the analog and digital inputs that are specific to a
given CCB PCB. The remaining analog and digital inputs monitor voltages and status bits
that are global to the system.

The 4 voltage outputs of the gpio-104 board aren’t currently used. However the driver
provides commands for setting their values.

Contents

1 Design considerations 3

1.1 The readout speed . 3

1.2 The versatility of the public device-driver interface 3

2 Loading the device-driver module 5

3 The system call interface 7

3.1 fcntl() . 7

3.2 select() . 8

3.3 read() . 8

3.3.1 Scaling the returned values to physical units 10

3.3.2 Determining whether an FPGA board is present 11

3.3.3 Front-panel LED limits . 11

3.4 ioctl() . 12

3.4.1 CCB GPIO IOCTL LIGHT LEDS 12

3.4.2 CCB GPIO IOCTL SNUFF LEDS 13

3.4.3 CCB GPIO IOCTL SET LEDS . 13

3.4.4 CCB GPIO IOCTL SET PERIOD 14

2

Chapter 1

Design considerations

1.1 The readout speed

The gpio-104 board relies on ISA-bus transactions to transfer data. This is very slow,
and because transfering a single byte using ISA-bus transactions, is achieved with a single
unbreakable inb or outb CPU instruction, each byte that is transfered to or from the gpio-104
board stalls the CPU for a whole 0.5µs ISA-bus cycle. If the driver transfered many such
bytes in sequence, then the computer would appear to hang until the sequence finished.
Given that this board is used by the CCB for low priority monitoring, that shouldn’t get in
the way of anything else, the driver thus had to be written to explicitly throttle-down the
frequency at which bytes are transfered. Each single-byte transaction still unavoidably takes
0.5µs, but the processor is explicitly given up for 1ms between certain of these transactions,
to allow other processes to make headway. These 1ms windows cover the period during which
an ADC is digitizing a new sample. According to the data-sheet, this delay only needs to be
9µs, so 1ms is much longer than needed. However 1ms is the shortest delay that the Linux
kernel offers that isn’t implemented using a non-interruptible busy-waiting loop.

The bottom-line is that if the minimal 9µs conversion delays were implemented, then reading
out monitoring information from all of the CCB PCBs, would theoretically take about 0.4ms,
whereas replacing the 9µs unbreakable delays with 1ms breakable delays, increases this to
40.4ms. Given that the monitoring period of the CCB manager will normally be around 1s,
and the mimum period invisaged is 100ms, this should be more than adequate.

1.2 The versatility of the public device-driver interface

There are two competing goals for a device-driver. On the one hand one ideally wants to give
the calling process the flexibility to do anything that the board can do, which means exposing

3

the lowest level of functionality, at the device-driver interface. On the other hand one wants
to hide the details of the hardware from the user-level code, to ensure optimal efficiency,
prevent the user-level code from doing dangerous things, and to make it easy to accomodate
a different board at a future date, without having to change the device-driver interface. The
final driver always ends up being a compromise between these aims. For a general purpose
device-driver to a general purpose I/O board, the compromise is usually biased towards
low-level versatility. This, however has serious drawbacks in terms of the complexity of the
device-driver interface, and in a loss of efficiency, due to the need for excessive numbers of
system calls to get anything done. In the case of the CCB, on the other hand, there are
specific goals for how this board is to be used, thus making a general-purpose interface hard
to justify, and it is important that it’s usage not impact higher-priority processes on the
computer. Thus a higher level interface has been chosen, which is designed around the CCB
usage of the board.

In particular, the front-panel LEDs can be turned on and off individually, or as a group, by
name, and monitoring information is automatically collected periodically behind the scenes,
by the driver, which then notifies the calling process whenever a new set of information
has been collected, and then allows all of this information to be collected in a single read
operation. This avoids the CCB server having to go through all of the circumlocutions
needed to address, request, delay and readout each sample.

4

Chapter 2

Loading the device-driver module

The device driver is implemented as a loadable module. Since this module doesn’t depend on
any other loadable driver modules, it can be loaded with a simple insmod command. If the
module were in the current directory, then the following command-line would be a typical
way to do this.

/sbin/insmod ./ccb_gpio_driver.ko major=124 base_addr=0x300 readout_period=100

The optional parameters shown above, are defined as follows.

• major

This is a unique major device number to assign to the driver (see the file devices.txt
in the kernel-distribution’s Documentation directory, for a list). If this number isn’t
specified, then the driver will ask the kernel for a suitable number, and the resulting
number can subsequently be determined by looking in the file /proc/devices.

The specified, or kernel-assigned number should be used to create the device-driver file
in /dev, using a command line like the following.

mknod /dev/ccbgpio c $major 0

where $major is the selected major number.

• base addr

This is the base address of the GPIO-104 card, which is set on the card via jumpers.
The factory-default value is 0x300.

• readout period

This parameter specifies how often the driver reads out monitoring information from
the CCB PCBs, and is interpretted as an integer number of milliseconds. Its default

5

value is 100ms, and a minimum value of 50ms is quietly enforced. Note that readouts
only occur when a process has the device-driver’s device-file open. The readout period
can subsequently be changed by such a process.

6

Chapter 3

The system call interface

Once the driver has been loaded, the server program connects to it by opening its device
file, as shown below.

#include "ccb_gpio_driver"

...

int fd = open(CCB_GPIO_DEV_FILE, O_RDWR);

Thereafter the read(), ioctl(), fcntl() and select() system calls can be used to control the
front-panel LEDs, reload the CCB firmware, and monitor the health of the CCB hardware.

3.1 fcntl()

This system call can be used to configure the file-descriptor of the device file, for non-blocking
I/O, as shown below.

int flags = fcntl(fd, F_GETFL, 0);

if(flags < 0 || fcntl(fd, F_SETFL, flags | O_NONBLOCK) < 0)

...error...

While it does no harm to explicitly switch into non-blocking I/O mode, it isn’t necessary if
the calling process only invokes read() when the select() system call indicates that there are
data to be read.

7

3.2 select()

This system call is used by the server to determine when a new set of monitoring data is
ready to be read from the driver. The following example shows select() being used to wait
for the device file to become readable. A more realistic example would have it waiting for
multiple files to become readable and/or writeable.

fd_set read_fds; /* A set of readable file descriptors */

int nready; /* The number of files that are ready for I/O */

/*

* Empty the set of readable file descriptors.

*/

FD_ZERO(&read_fds);

/*

* Add the driver’s file descrptor to the set that are to be

* watched for readability.

*/

FD_SET(fd, &read_fds);

/*

* Wait for the driver to indicate that fd is readable.

*/

nread = select(fd+1, &read_fds, NULL, NULL, NULL);

if(nread < 0)

... error ...

/*

* Was fd marked as readable?

*/

if(FD_ISSET(fd, &read_fds)) {

...read from fd...

};

3.3 read()

Whenever select() indicates that the device-file is ready to be read, this indicates that there
is a new set of monitor data available to be read. If this isn’t read before the next set of
monitor data becomes available, then the older copy is simply discarded. Each call to read()
reads either a whole set of monitoring data, if data were avaiable, or nothing if either no data
were available in non-blocking mode, or the read was interrupted by a signal, while waiting
for a new data-set to arrive. If the caller to read() requests fewer bytes than the number
that constitute a data-set, then the remaining bytes of that data-set are simply discarded.

8

Note that it isn’t possible for a call to read() to be interrupted in the middle of delivering a
data-set. So there is no need to be able to restart reading from the middle of a data-set. In
other words, calls to read() are atomic, in that they either return/consume a full monitoring
data-set, or they return nothing at all.

Each successful call to read() returns a data-set encapsulated in a CCBMonitorData structure.
This is defined as follows:

typedef struct {

unsigned short fan12v; /* The voltage of the 12V fan PSU */

unsigned short a8v; /* The voltage of the analog 8V PSU */

unsigned short d5v; /* The voltage of the digital 5V PSU */

unsigned short cnf_done; /* True if the FPGAs have all finished */

/* loading their firmware. */

unsigned short high_temp; /* True if there is a high-temperature */

/* condition. */

unsigned short ccb_id; /* The 2-bit ID of the CCB hardware */

CCBFpgaMonitorData fpga[CCB_NUM_SLAVE+1];

/* Data of the master-FPGA CCB, */

/* followed by those of the 4 slave */

/* FPGAs. */

} CCBMonitorData;

In this structure, the 2-bit ccb id member identifies which CCB is attached, and is used at
boot-time to decide which IP address to assign to the CCB computer.

The elements of the embedded fpga[] array are structures of type CCBFpgaMonitorData,
which is defined as follows:

typedef struct {

unsigned short d1_2v; /* The voltage of the digital 1.2V PSU */

unsigned short d2_5v; /* The voltage of the digital 2.5V PSU */

unsigned short d3_3v; /* The voltage of the digital 3.3V PSU */

unsigned short a5v; /* The voltage of the analog 5V PSU */

unsigned short hb; /* The mean voltage of the heartbeat */

/* signal. */

unsigned short cnf_error; /* True if an error occurred while */

/* loading the FPGA firmware. */

unsigned short cnf_done; /* True if the FPGA firmware */

/* loading-process has completed. */

} CCBFpgaMonitorData;

So, an example of how to read a monitor-data packet is as follows.

9

int fd; /* The file-descriptor of the opened */

/* /dev/ccbgpio device, left configured */

/* for blocking I/O. */

ssize_t nread; /* The number of bytes read */

CCBMonitorData md; /* A packet of monitoring data */

...

nread = read(fd, &md, sizeof(md));

if(nread < 0) {

fprintf(stderr, "Error reading %s: %s\n",

CCB_GPIO_DEV_FILE, strerror(errno));

} else if(nread < sizeof(md)) {

fprintf(stderr, "Unexpected short read from %s.\n",

CCB_GPIO_DEV_FILE);

} else {

printf("CCB ID = %d\n", md.ccb_id);

};

In the example, since the file-descriptor has not been configured for non-blocking I/O, the
call to read() doesn’t return until either data becomes available, or a signal arrives, or an
error occurs. Therefore we don’t have to separately check for nread being zero, which, in
non-blocking mode, would indicate that no data were currently available.

3.3.1 Scaling the returned values to physical units

The returned values that represent analog quantities, are returned as unsigned 12-bit ADC
counts. To facilitate converting these into floating-point values to voltages, the ccb gpio-
driver.h header-file defines one scaling macro per item. In the following, where md is a
CCBMonitorData variable, and n is the index of an FPGA board, examples are shown of how
to use each of the scaling constants.

• The fan voltage:

float v = md.fan12v * CCB GPIO SYS FAN12V SCALE

• The shared analog 8V PSU voltage:

float v = md.a8v * CCB GPIO SYS A8V SCALE

• The shared digital 5V PSU voltage:

float v = md.d5v * CCB GPIO SYS D5V SCALE

• An FPGA’s digital 1.2V PSU voltage:

float v = md.fpga[n].d1 2v * CCB GPIO SYS D1 2V SCALE

10

• An FPGA’s digital 2.5V PSU voltage:

float v = md.fpga[n].d2 5v * CCB GPIO SYS D2 5V SCALE

• An FPGA’s digital 3.3V PSU voltage:

float v = md.fpga[n].d3 3v * CCB GPIO SYS D3 3V SCALE

• An FPGA’s analog 5V PSU voltage:

float v = md.fpga[n].a5v * CCB GPIO SYS A5V SCALE

• An FPGA’s mean heartbeat voltage:

float v = md.fpga[n].hb * CCB GPIO SYS HB SCALE

3.3.2 Determining whether an FPGA board is present

All of the voltages that are monitored in the CCB are presented to the ADC channels in a
scaled form, such that their nominal voltages fall at the mid point of the ADC input range. A
power-supply voltage should thus never be close to zero ADC units unless the power-supply
is broken or the corresponding CCB board isn’t present . If all of the power-supply voltages
of a given FPGA-board are close to zero, then this is used by the ccbserver and ccb monitor-
status programs as convincing evidence that said FPGA board is not present in the system.
Since an unconnected ADC input won’t generally yield exactly zero ADC counts, due to
noise and offsets, an appropriate limiting value of CCB GPIO ABSENCE LIMIT is defined.
This is expressed in ADC counts, and is currently set to 10% of the nomimal mid-point
voltage. In practice 10% is very conservative, since the input noise for an unconnected input
is closer to 0.5% of the nomimal mid-point value.

3.3.3 Front-panel LED limits

The ccbserver and ccb monitor status programs set LEDs on the front panel of the CCB,
according whether the returned analog values are within reasonable limits. To ensure that
both programs use the same limits, the limits are parameterized by macros in ccb gpio-
driver.h. The allowable ranges of values that are specified by these macros are defined as
follows.

• CCB GPIO SYS FAN12V MIN ≤ md.fan12v ≤ CCB GPIO SYS FAN12V MAX

• CCB GPIO SYS A8V MIN ≤ md.a8v ≤ CCB GPIO SYS A8V MAX

• CCB GPIO SYS D5V MIN ≤ md.d5v ≤ CCB GPIO SYS D5V MAX

• CCB GPIO FPGA D1 2V MIN ≤ md.fpga[n].d1 2v ≤ CCB GPIO FPGA D1 2V MAX

11

• CCB GPIO FPGA D2 5V MIN ≤ md.fpga[n].d2 5v ≤ CCB GPIO FPGA D2 5V MAX

• CCB GPIO FPGA D3 3V MIN ≤ md.fpga[n].d3 3v ≤ CCB GPIO FPGA D3 3V MAX

• CCB GPIO FPGA A5V MIN ≤ md.fpga[n].a5v ≤ CCB GPIO FPGA A5V MAX

• CCB GPIO FPGA HB MIN ≤ md.fpga[n].hb ≤ CCB GPIO FPGA HB MAX

3.4 ioctl()

The ioctl() system-call is used to send commands to the driver to set the states of the
front-panel LEDs, reload the CCB firmware, or configure the driver.

3.4.1 CCB GPIO IOCTL LIGHT LEDS

Use the following ioctl() call to turn on a specified set of the front-panel LEDs, without
affecting the states of any of the other LEDs. The (int) argument of this call is a bit-mask
union of CCBPanelLed enumerators, denoting which LEDs should be turned on. For example,
to turn on the cal-mode and dump-mode LEDs, you would call ioctl() as follows:

#include "ccb_gpio_driver"

...

if(ioctl(fd, CCB_GPIO_IOCTL_LIGHT_LEDS,

CCB_CAL_MODE_LED | CCB_DUMP_MODE_LED) < 0)

perror("ioctl(CCB_IOCTL_LIGHT_LEDS)");

The complete set of LEDs that can be controlled, are members of the CCBPanelLed enumer-
ation, which is defined, along with the functions of each LED, as follows.

typedef enum {

CCB_SAMPLE_MODE_LED = 1, /* CCB is in sample mode */

CCB_SLAVE4_READY_LED = 2, /* Slave-FPGA 4 firmware loaded */

CCB_SLAVE3_READY_LED = 4, /* Slave-FPGA 3 firmware loaded */

CCB_SLAVE2_READY_LED = 8, /* Slave-FPGA 2 firmware loaded */

CCB_SLAVE1_READY_LED = 16, /* Slave-FPGA 1 firmware loaded */

CCB_MASTER_READY_LED = 32, /* Master-FPGA firmware loaded */

CCB_HEARTBEATS_OK_LED = 64, /* All FPGAs have healthy heartbeats. */

CCB_POWER_OK_LED = 128, /* All power-supllies ok */

CCB_SLAVE4_ERROR_LED = 256, /* Slave-FPGA 4 firmware load-error */

12

CCB_SLAVE3_ERROR_LED = 512, /* Slave-FPGA 3 firmware load-error */

CCB_SLAVE2_ERROR_LED = 1024,/* Slave-FPGA 2 firmware load-error */

CCB_SLAVE1_ERROR_LED = 2048,/* Slave-FPGA 1 firmware load-error */

CCB_MASTER_ERROR_LED = 4096,/* Master-FPGA firmware load-error */

CCB_CAL_MODE_LED = 8192, /* Cal test-mode */

CCB_DUMP_MODE_LED = 16384, /* Dump mode */

CCB_TEST_MODE_LED = 32768 /* Test mode */

} CCBPanelLed;

Note that the value of each enumerator is the value of a single bit, and that this thus allows
them to be OR’d together to indicate any particular set of LEDs.

3.4.2 CCB GPIO IOCTL SNUFF LEDS

Use the following ioctl() call to turn off a specified set of the front-panel LEDs, without
affecting the states of any of the other LEDs. The (int) argument of this call is a bit-mask
union of CCBPanelLed enumerators, denoting which LEDs should be turned off. For example,
to turn off the cal-mode and dump-mode LEDs, you would call ioctl() as follows:

#include "ccb_gpio_driver"

...

if(ioctl(fd, CCB_GPIO_IOCTL_SNUFF_LEDS,

CCB_CAL_MODE_LED | CCB_DUMP_MODE_LED) < 0)

perror("ioctl(CCB_GPIO_IOCTL_SNUFF_LEDS)");

3.4.3 CCB GPIO IOCTL SET LEDS

Use the following ioctl() call to set the states of ALL of the front-panel LEDs. The (int)
argument is a bit-mask union of CCBPanelLed enumerators, in which the presence of an
enumerator indicates that the corresponding LED should be turned on, and the absence of
an enumerator indicates that the corresponding LED should be turned off.

For example, to turn all of the LEDs off, one would call ioctl() as follows.

#include "ccb_gpio_driver"

...

if(ioctl(fd, CCB_GPIO_IOCTL_SET_LEDS, 0) < 0)

perror("ioctl(CCB_GPIO_IOCTL_SET_LEDS)");

13

3.4.4 CCB GPIO IOCTL SET PERIOD

Use the following ioctl() opcode to change the monitoring interval. This is the interval
between readouts of all monitored values. The (int) argument is the integer number of
milliseconds between readouts. The special value of 0, selects the default readout period,
which is either the value of the readout period parameter, that was optionally specified when
the module was loaded, or the value of the CCB GPIO DEFAULT READOUT PERIOD macro
in ccb gpio driver.h, if the readout period parameter was not specified at load-time.

All other values are quietly rounded up to the value of the CCB GPIO MIN READOUT-
PERIOD macro.

For example, to change the readout interval to 250ms, you would invoke ioctl() as follows:

#include "ccb_gpio_driver"

...

if(ioctl(fd, CCB_GPIO_IOCTL_SET_PERIOD, 250) < 0)

perror("ioctl(CCB_GPIO_IOCTL_SET_PERIOD)");

When this call is received, the next scheduled readout-time is cancelled, and the readout
timer is reconfigured to next go off at the specified interval in the future.

14

