
The network interface between the Ygor manager and

the CCB server

[Document number: A48001N002, revision 9]

Martin Shepherd

California Institute of Technology

June 10, 2004

This page intentionally left blank.

Abstract

This document documents the network communications interface between an Ygor manager
process and the server of the Caltech Continuum Backend (CCB). It starts with a high-
level overview of client and server communications library, proceeds to describe the public
communication API that this library provides, and continues with descriptions of successively
lower levels within the library.

Contents

1 Introduction 9

1.1 A guide to reading this manual . 9

1.1.1 Points of interest to writers of the CCB Manager program 9

1.1.2 Points of interest to writers of the CCB server program 10

1.1.3 The organization of this manual . 10

1.2 The two TCP/IP links used by the library 11

1.3 Connection establishment . 11

1.4 Connection authentication . 12

1.5 Initial configuration . 12

1.6 Single threaded versus multi-threaded . 12

1.7 Library usage caveats . 13

1.8 Shared libraries and their versioning . 14

2 Installation 16

2.1 Getting the source code . 16

2.2 The basics of installation . 16

2.3 Compiling in a different directory . 17

2.4 Specifying where files are installed . 17

2.5 Generating this manual . 18

2.6 Testing the libraries using the demonstration programs 18

2.6.1 ccb dummy client . 20

2.7 Run-time configuration files . 21

2.8 The ccb authorized ips configuration file . 21

3 The common parts of the CCB server and client APIs 22

3.1 The configuration of the CCB . 22

2

3.1.1 The configuration of the phase switches 24

3.1.2 The configuration of the calibration diodes 27

3.1.3 The configuration of hardware timing parameters 29

3.1.4 The configuration of sampler control parameters 32

3.2 Integration and scan timing information . 33

3.2.1 Interval computations . 35

ccb scale interval() . 35

ccb add intervals() . 35

ccb subtract interval() . 36

ccb compare intervals() . 36

ccb zero interval() . 36

ccb interval is zero() . 37

ccb clock interval() . 37

3.2.2 Cal-diode and phase-switch settling times 37

3.2.3 The number of phase-switch states per cycle 38

3.2.4 The physical duration of an integration period 38

3.2.5 The effective integration time . 39

3.2.6 The duration of a scan . 39

3.2.7 The number of integrations that fit within a time interval 39

3.2.8 The number of integrations in a calibration cycle 40

3.3 Timestamps . 40

3.3.1 Getting the current date and time . 41

3.3.2 Comparing two timestamps . 41

3.3.3 Computing the amount of time remaining until a given time 42

3.3.4 Adding a time-interval to a timestamp 42

3.3.5 Converting a time t value to a CCBTimeStamp value 42

3.3.6 Getting the clock time from a timestamp 43

4 The CCB client communications API 44

4.1 Include files . 46

4.2 The CCB-client communications library . 47

4.3 Creating the client resources needed to talk to a CCB server 47

4.4 Connecting to a CCB server . 48

4.5 Disconnecting from a CCB server . 49

3

4.6 Deleting a redundant CCBClientLink object 49

4.7 Requesting non-blocking I/O . 50

4.8 ccb client communicate() – Perform client socket I/O 50

4.9 Client I/O multiplexing . 51

4.9.1 Using the select() system call . 51

4.9.2 Using the poll() system call . 52

4.9.3 Third party event handlers . 52

4.9.4 Using threads to multiplex I/O . 53

4.10 Registering a command-error callback function 54

4.11 Outgoing CCB commands . 55

4.11.1 Outgoing CCB control commands . 56

ccb queue start scan cmd() – Queuing a start-scan command 56

ccb queue stop scan cmd() – Queuing a stop-scan command 57

ccb queue dump scan cmd() – Queuing a dump-scan command . . . 58

ccb queue load driver cmd() – Queuing a load driver command 59

ccb queue monitor cmd() – Queuing a monitor command 60

ccb queue telemetry cmd() – Queuing a telemetry command 60

ccb queue logger cmd() – Queuing a logger command 61

ccb queue reset cmd() – Queuing a reset command 61

ccb queue ping cmd() – Queuing a ping command 61

ccb queue status request cmd() – Queuing a status-request command 62

ccb queue shutdown cmd() – Queuing a shutdown command 63

ccb queue reboot cmd() – Queuing a reboot command 63

4.12 Incoming control-link replies . 63

ccb status reply callback() – Routing status-request replies 64

4.13 Incoming telemetry messages . 65

ccb monitor msg callback() – Routing telemetry monitor-data messages . . . 67

ccb integ msg callback() – Routing telemetry integ-data messages 67

ccb log msg callback() – Routing telemetry log-message messages 69

4.14 A TCL wrapper around the CCB client API 70

5 The CCB server communications API 79

5.1 Include files . 79

5.2 The CCB-server communications library . 80

4

5.3 Creating the resources used to communicate with CCB managers 80

5.3.1 The CCB server’s device-driver interface 81

5.4 Shutting down server communications . 88

5.5 Server I/O multiplexing . 88

5.6 Queuing replies to control commands . 89

5.7 Queuing outgoing telemetry messages . 89

5.7.1 Queuing outgoing monitor-data messages 89

5.7.2 Queuing outgoing integ-data messages 89

5.7.3 Queuing outgoing log-message messages 90

6 Library internals 91

6.1 The message translation layer . 93

6.1.1 Message structure specification . 93

6.1.2 Supported data-types within message structures 93

6.1.3 CCBNetMsg - The base-class of all messages 93

6.1.4 Some example message structures . 94

6.1.5 CCBNetMsgMember – Message field descriptions 94

6.1.6 CCBNetMsgInfo – Individual message descriptions 95

6.2 The CCB interface layer . 96

6.2.1 The message structures of outgoing control messages 97

CCBPhaseSwitchCmd – The phase-switching configuration command 98

CCBCalDiodeCmd – The calibration diode configuration command . 99

CCBTimingCmd – The acquisition-timing configuration command . . 99

CCBSamplerCmd – The sampler configuration command 99

CCBStartScanCmd – The start-scan command 100

CCBStopScanCmd – The stop-scan command 100

CCBDumpScanCmd – The dump-scan command 100

CCBMonitorCmd – The monitor command 101

CCBTelemetryCmd – The telemetry command 101

CCBLoggerCmd – The logger command 101

CCBResetCmd – The reset command 101

CCBPingCmd – The ping command 102

CCBStatusRequestCmd – The status-request command 102

CCBShutdownCmd – The shutdown command 102

5

CCBRebootCmd – The reboot command 102

CCBLoadDriverCmd – The load driver command 103

6.2.2 The message structures of incoming control-link replies 103

CCBCntrlPingReply – A reply to a ping command 104

CCBStatusReply – A reply to a status-request command 104

CCBCntrlCmdAck – An acknowledgment to a control command . . 104

6.2.3 The message structures of incoming telemetry messages 104

CCBIntegMsg – Integration data messages 105

CCBMonitorMsg – Monitor data messages 106

CCBLogMsg – CCB log messages 106

CCBTelemPingReply – A reply to a ping command 107

6.3 Sending network messages . 107

6.4 Receiving network messages . 108

A Changes to the library in version 2.0 109

A.1 Changes to the shared parts of the client and server APIs 109

A.1.1 Added functions . 109

A.1.2 Added datatypes . 110

A.1.3 Added constants . 111

A.1.4 Functions with modified APIs . 111

A.1.5 Modified datatypes . 112

A.1.6 Functions with modified behaviors 113

A.1.7 Removed functions . 113

A.2 Changes to the client-specific parts of the public API 114

A.2.1 Added functions . 114

A.2.2 Functions with modified APIs . 114

A.2.3 Modified datatypes . 114

A.2.4 Removed functions . 115

A.3 Changes to the server-specific parts of the public API 115

A.3.1 Added functions . 115

A.3.2 Functions with modified APIs . 116

A.3.3 Added datatypes . 116

A.3.4 Modified datatypes . 117

A.3.5 Removed functions . 117

6

A.3.6 Removed Datatypes . 117

A.4 Changes to the demonstration programs . 118

A.4.1 The evolution of ccb demo server into ccbserver 118

A.4.2 Changes to the features of ccb demo client 118

7

List of Figures

3.1 Example phase-switching cycles . 25

3.2 The anatomy of a data-scan or intra-scan . 34

6.1 The CCB communications stack . 92

8

Chapter 1

Introduction

Communications between the CCB manager and the CCB server are facilitated by two
communications libraries, one for use by the manager and the other for use by the CCB
server. These libraries hide the specifics of the communications protocols used, the buffering
used for non-blocking I/O, the queuing of outgoing messages, and the receipt of incoming
messages. The library used by the manager is designed to operate either under the auspices
of an arbitrary I/O event loop of a single-threaded manager, or under the control of I/O-
handling threads within a multi-threaded manager.

1.1 A guide to reading this manual

This manual is intended not only as a description of the public APIs available to the CCB
manager and server programs, but also as documentation of the behavior of the library in-
ternals. Most readers can either ignore non-pertinent sections of this manual, or superficially
read them to gain a better understanding of how the various parts interoperate. Only the
maintainer of the libraries need read all parts. Note that any changes to the documented
API, that have been made between releases of the library, are summarized in Appendix A.

1.1.1 Points of interest to writers of the CCB Manager program

Since the programmers who write the CCB manager program don’t need to know about
the APIs used by the CCB server, or about the internals of the CCB libraries, they can
completely ignore chapters 5 and 6.

The remaining chapters that these readers do need to digest are nonetheless very detailed,
and without the benefit of top-down illustrations of how things go together, readers are at
risk of not being able to see the wood for the trees. For this reason, the following high-level

9

code examples are provided.

• Using the C client API in a CCB manager program Page 44

This example illustrates the function calls that are required to implement a manager,
and the order in which they are normally called. For the sake of example, it illustrates
the use of a select() based event loop in the manager. As documented later, this is
only one of many options that the manager has at its disposal. The reader can also
refer to a fleshed-out version of this example, by looking at the C code of the included
ccb dummy client program (see ccb demo client.c).

• Using the Tcl version of the client API Page 77

This example provides a fully working illustration of using the Tcl wrapper library
of the client C API. This wrapper was written to facilitate implementation of the
GUI client demonstration program, ccb demo client, but because of its simplicity, it is
potentially also useful for prototyping, experimentation, and testing.

The first-time reader is recommended to glance over these examples before immersing them-
selves in the documentation of the API.

1.1.2 Points of interest to writers of the CCB server program

The CCB server is currently the responsibility of the writer of this manual, so although
full API documentation is provided for the benefit of a future maintainer, code examples
aren’t provided. To gain an understanding of the CCB server API, the reader can ignore
chapters 4 and 6, which document the client communications API and the library internals,
respectively.

1.1.3 The organization of this manual

The chapter following the one that you are currently reading, provides detailed instructions
for downloading, installing, and testing the libraries and demonstration programs.

This is followed by a chapter which documents utility functions that are of use to both the
implementors of the CCB manager and the CCB server, such as functions for setting and
querying configuration parameters within CCB configuration objects, functions for generat-
ing and manipulating timestamps, and functions for computing the timing of integrations
and scans. Of particular importance in this chapter are the descriptions of the CCB config-
uration parameters, and their effects on the behavior of the backend hardware.

The next chapter documents the public API provided by the library that implements the
manager side of the communications interface. This is followed by a chapter that documents

10

the public API provided by the library that implements the server side of the communications
interface. The latter chapter can be ignored by those writing the manager program.

The final chapter documents the internals of the two libraries, including the communications
protocols that the libraries use to exchange messages with each other. This is probably only
of interest to the maintainer of these libraries.

After the final chapter, an appendix summarizes changes that have been made to the docu-
mented API of the library in new releases.

Following the appendix, a page-index is provided of all functions, datatypes and macros in
the public APIs of the two libraries. This is a very basic index, in that only the page number
of the most important reference to each of the specified items is given.

The remaining sections of the introductory chapter that you are now reading provide an
overview of various concepts that are needed to understand the remainder of the manual.

1.2 The two TCP/IP links used by the library

The CCB server process has two TCP/IP ports.

1. The control port

This port is used by the manager end of the communications link, to send commands
to the CCB server, and in some cases, receive replies to these commands from the CCB
server. The CCB server never sends any unsolicited messages to the manager over this
link, so it is effectively completely under the control of the manager.

2. The telemetry port

This port is used by the server to send data to the manager. This includes integrated
radiometer data, monitoring data and log messages. The CCB manager never sends
messages to the server over this link, so this link is essentially a one-way link, entirely
under the control of the CCB server. The manager does, however, tell the server what
classes of data it expects to receive over this link, and at what frequency.

1.3 Connection establishment

Connection establishment between the manager and the CCB server, is initiated by the ccb-
client connect() function, described later. This initiates TCP/IP connections to the control
and telemetry server ports on a specified computer. The TCP/IP port numbers of these
two servers are defined in ccbconstants.h, as C macros called CCB CONTROL PORT and

11

CCB TELEMETRY PORT.

1.4 Connection authentication

For security reasons, the run-time configuration file of the CCB server includes a list of the
numeric IP addresses of the computers that are allowed to connect to the CCB server. An
asterisk in place of any of the numeric components of these addresses acts as a wild-card,
so it is possible to configure access to all computers within a given sub-domain via a single
entry.

If the connecting manager isn’t connecting from one of these authorized IP addresses, or a
new connection is attempted while a manager is already connected to the CCB server, the
new connection is rejected. In the case of a manager already being connected, the rejected
connection request is reported to the existing manager as a log message.

1.5 Initial configuration

Whenever a manager establishes a new connection to a CCB server, the CCB server reinitial-
izes the CCB hardware, sets all CCB configuration parameters to their power-on-defaults,
and disables all telemetry except log messages. The manager then has the option of over-
riding the server’s default configuration parameters with its own, before sending a CCB
telemetry command to enable the telemetry that it wants to receive.

1.6 Single threaded versus multi-threaded

Most of the discussions in this document assume that the client and server communications
libraries are being used from a single thread in their host programs, and that I/O is mul-
tiplexed using select() or poll(), combined with non-blocking I/O. An alternative strategy
would be to have reads from the control socket, writes to the control socket, and reads
from the telemetry socket all be performed by different threads within a multi-threaded
program, and for each of these threads to use blocking I/O. For the manager side of the
communications link, this is facilitated as follows.

• All functions in the manager side of the communications library can be called from
multiple threads. In particular, if multiple threads call the function that performs I/O
on the communications sockets, one thread can be writing to the control socket, while
another is reading from this socket, and a third is reading from the telemetry socket.

• The library uses no modifiable static data. All modifiable data structures are allocated
from the heap.

• The library uses POSIX thread-safe interfaces where available and uses POSIX thread
calls to control multi-threaded access to heap-data and other shared resources.

12

• Within the communications library, before a thread calls any of the manager’s callback
functions, it first releases any locks that it is holding. It then reacquires those locks
when the callback returns. This avoids deadlocks that would otherwise result if a
callback were to call another function in the library.

To take advantage of this aspect of the library, the manager must observe the following rules.

• The manager must not toggle the non-blocking attribute of the CCB sockets from one
thread while other threads are sending or receiving data over those sockets.

• When the manager registers the callback functions that are to be invoked when mes-
sages are received from the control and telemetry connections, it is the manager’s
responsibility to ensure that these callbacks are thread safe. If the callback-data ob-
ject that the manager registers along with a given callback function, is also used by
another callback function that will be called by different thread, it is also the manager’s
responsibility to ensure that this object is accessed in a thread-safe manner in the two
callbacks.

The server side of the communications library is designed for a server program that does
nothing more than act as a bridge between the server library and the CCB device driver. As
such, unlike the manager API of the library, the server end of the library is designed to be
driven by a simple select() based I/O event loop in a single-threaded server program.

1.7 Library usage caveats

The following general rules must be observed by the manager when calling functions in the
public API of the communications library.

• None of the library functions are async-signal-safe, and should thus not be called from
signal handlers.

• Some callback functions are passed pointers to arrays as arguments. These functions
must assume that these pointers, and the arrays to which they point, become invalid as
soon as the callback function returns. If longer term access to their contents is needed,
the callback must make its own copy.

For example, when log messages are sent to the manager by the log-message callback,
the error message string is discarded and its array potentially reused for a different
message as soon as the callback function returns.

Incoming messages are delivered to the manager via callback functions that the manager pro-
vides. The library header-files provide macros for declaring and prototyping these functions.
For example, a typical callback definition macro might be the following,

13

#define CCB_EXAMPLE_CALLBACK_FN(fn) int (fn)(void *data, int x)

Now, say that the manager wanted to define a callback function of this type called my-
callback(). Its function prototype would be written like:

static CCB_EXAMPLE_CALLBACK_FN(my_callback);

and its definition written like,

static CCB_EXAMPLE_CALLBACK_FN(my_callback)

{

...the body of the function...

}

It is recommended that these callback function macros be used, because if additions ever
need to be made to the argument lists of any of the callback functions, a simple recompile
of the manager will then automatically incorporate the new definitions.

1.8 Shared libraries and their versioning

The communications libraries are compiled as shared libraries under both Solaris and Linux.
This brings the possibility of strict versioning support from the respective linkers, and the
ability to restrict which symbols are exported to application programs, thus preventing the
unsupported use of internal library functions. The versioning scheme implemented by the
Linux and Solaris run-time linkers is documented at

http://www.usenix.org/publications/library/proceedings/als2000/browndavid.html

The basic idea is that libraries have three version numbers, a major number, a minor number
and a micro number. These are used as follows:

• When a library update only involves modifications to the internal implementation of
the library, without any changes being made to the public interface, the micro version
number is incremented by 1. In this case an application can safely run against the new
shared library without needing to be recompiled.

• When the existing public interface is augmented with the addition of new functions,
without any changes being made to the interfaces of the existing public functions, the

14

minor version number is incremented by one, and the micro version number is reset to
zero. In this case a previously compiled application can run against the updated shared
library, without needing to be recompiled, but will obviously need to be recompiled if
it wishes to make use of any of the added features.

• When any aspect of the existing public interface is changed, the major version number is
incremented by one, and the minor and micro version numbers are reset to zero. Since
the new library isn’t backwardly compatible with the previous one, the application
needs to be recompiled before the run-time linker will allow it to use the new library
version. This kind of update should be avoided if at all possible.

To enhance the capabilities of the Solaris and Linux run-time linkers, a map file is used
when a shared library is created. This lists the symbols that were added in each new minor
version of the library. This allows the run-time linker to check that all of the functions that
the application actually uses, are provided in the current version of the shared library, even
if the current shared library is older than the one that the application was originally linked
against.

Configuration of the communication library makefiles to support this scheme are performed
by a standard autoconf configure script which, if need be, can later be tailored to future
operating systems. Modifications are performed by editing the file configure.in, which is
heavily commented, then running the autoconf program to generate a configure script from
this.

15

Chapter 2

Installation

2.1 Getting the source code

The latest version of the library code, plus this documentation can be downloaded from,

http://www.astro.caltech.edu/~mcs/GBT/libccb.tar.gz

To extract the contents of this tar file, type,

gunzip -c libccb.tar.gz | tar xf -

2.2 The basics of installation

Configuration, compilation and installation are performed in the standard manner used in
the free-software community.

cd libccb

./configure

make

make install

The provided autoconf configuration script currently only knows about Solaris and Linux,
but configure.in is heavily commented to facilitate the addition of configurations for other op-
erating systems. The only parameters of the configuration that need to be changed from one
operating-system to the next, are those that refer to shared library creation and versioning.

16

2.3 Compiling in a different directory

In the above example, compilation is performed in the directory that contains the source
code of the CCB libraries. Alternatively, one can perform the compilation in a different
directory, simply by going to that directory and running the configure script from there. For
example:

gunzip -c libccb.tar.gz | tar xf -

mkdir linux

cd linux

../libccb/configure

make install

The makefile that the configure script generates contains pathnames to each component that
it needs. This allows compilations for multiple operating systems to be performed from a
single NFS-mounted copy of the source code.

2.4 Specifying where files are installed

By default, the libraries, demonstration programs, public include files and run-time configu-
ration files are installed, respectively, in the lib/, bin/, include/ and etc/ subdirectories of the
/usr/local/ directory. Via the following optional arguments passed to the configure script,
these default locations can be overridden.

• prefix=pathname

This argument changes the choice of /usr/local for the directory in whose sub-directories
the files are installed, to the specified directory pathname.

• libdir=pathname

This argument changes the location where libraries are installed, to the specified di-
rectory pathname.

• bindir=pathname

This argument changes the location where executables, such as the demonstration
programs are installed, to the specified directory pathname.

• includedir=pathname

This argument changes the location where the public include files of the CCB libraries
are installed, to the specified directory pathname.

• sysconfdir=pathname

17

This argument changes the location where the CCB run-time configuration files, such
as the ccb authorized ips file, are installed, to the specified directory pathname.

Note that if any of the installation directories don’t already exist, the make install command
creates them.

2.5 Generating this manual

A copy of the manual this is included as LATEX source code in the CCB software distribution.
The following make commands can be used to create the manual in any of 3 formats. Note
that since there isn’t an obvious place to install the manual, the make install command ignores
it, and it is left in the current directory.

• make dvi

This command generates a version of the manual which can be viewed with the standard
xdvi program.

• make ps

This generates a version of the manual which can either be printed on a postscript
printer, or displayed interactively, using a postscript viewer, such as ghostview, kghostview
(KDE), pageview (Solaris), or ggv.

• make pdf

This generates a PDF version of the manual, viewable with programs such as acroread,
xpdf or gpdf.

If when the configure was script run, the optional LATEX hyperref package was found, the dvi
and pdf versions of the manual include hypertext links. Beware that these links all point
to the starts of sections or sub-sections, so a reference in the index to a particular page,
actually links to the start of the section that contains that page.

2.6 Testing the libraries using the demonstration pro-

grams

In addition to building the CCB client and CCB server libraries, the makefile also compiles,
links and installs a simple, GUI-based, demonstration client program, that can be used for
testing, and the CCB server program.

18

Since the installation paths of the shared libraries and the CCB configuration files are embed-
ded within the executables, it is necessary to run the “make install” step before attempting
to run the demonstration programs. Thus if you wish to test out the demonstration pro-
grams before performing the final installation, first perform the installation in a temporary
place, then later recompile and reinstall in the final place. For example, to install under
/home/mcs/tmp, one would do the following steps.

./configure --prefix=/home/mcs/tmp

make install

Later on, to perform the final installation in subdirectories of a different directory, one
would repeat this, but replacing the /home/mcs/tmp in the above, with the path of the
desired directory.

Having installed the CCB software, check that the ccb authorized ips file, which is by-default
installed in the etc/ subdirectory of the chosen top-level installation directory, contains
an entry that covers the IP address of the computer on which you will be running the
demonstration client (see page 21).

Now start two terminal windows, either on the same host, or on two different hosts. For the
sake of example, assume that when you ran the configure script, you passed it the arguments
prefix=$HOME/tmp, to have the software installed under a temporary directory in your home
directory, and that this home directory is visible from both of the hosts that are running the
two terminals. Now in one terminal window type:

$HOME/tmp/bin/ccbserver

and in the other terminal window type:

$HOME/tmp/bin/ccb_demo_client

Provided that Tcl/Tk is installed on your system, and that the configure script found it, the
demonstration client program will now display a graphical user interface, giving you write-
access to all CCB configuration parameters and CCB commands. To connect this program
to the CCB server, type the name of the computer on which you are running ccbserver,
into the entry area to the right of the Connect button, then press this button. The logging
area should then display two messages from the CCB server, saying that it is accepting
new control and telemetry connections. If this doesn’t happen, it probably means that
at the time when ccbserver was started, the ccb authorized ips file didn’t contain an entry
authorizing connections from the computer on which you are running the ccb demo client
program. If so, restart ccbserver after adding an appropriate entry to the latter file.

19

Assuming that this all worked, the CCB server will initially have all telemetry except log-
messages turned off. As a reminder of this, the Off button is initially colored bright red.
To enable all telementry, press the “Ready” button. After doing this, you should see fake
integrated data being displayed in the second-to-last beige area from the bottom of the GUI,
roughly once per second. After every ten of these updates, the monitoring area below the
integrated data area will also display updated monitor data. The initial rates at which the
integrated and monitoring data are received and displayed are set by the default configuration
parameters shown in the window. These can subsequently be changed. In particular, if you
change the number in the entry-area next to the “Configure Monitoring” button, and then
press the latter button, the modified number will be used to determine how often fake
monitor-data updates are sent.

As described later, changes to the phase-switch, cal-diode, timing, and sampler configura-
tion parameters, in the top three panes of the window, only take effect when a new scan,
dump-scan, or intra-scan is started. Thus to change the integration period of the fake in-
tegrations, you would change, say the “Integ period” configuration parameter in the “timing
configuration” window-pane, then press either the “Start scan”, “Stop scan”, or “Dump scan”
buttons, to start a new scan that operates according to these parameters.

By default, the demonstration client addresses a virtual CCB driver within the ccbserver
program. This driver simulates the CCB hardware, and can thus be used for off-line testing of
the manager program. While this driver is being used, the CCB server prints what it is doing,
on its parent terminal, indicating any effects that commands sent by the demonstration client
(or a real manager), would have on the real hardware. The simulation driver also sends back
faked integration and monitoring data, timed and flagged according to the current CCB
configuration parameters.

The user of the demonstration client can also ask the CCB server to switch to addressing
the real CCB driver, simply by selecting the Normal entry of the Load Driver option-menu.
At the moment, this results in error messages being generated, since the real CCB driver
is currently no more than a set of unimplemented stub-functions, but as these functions
become implemented, the demonstration client will thus provide a way to test them, and the
CCB hardware that they control.

2.6.1 ccb dummy client

In addition to the interactive demonstration client that was introduced above, a non-interactive
demonstration client called ccb dummy client is provided. This initiates a non-blocking con-
nection to the demonstration server, queues a full set of configuration and operating com-
mands to be sent to the server, once the connection has been established, then enters a
select() driven event loop. The event loop then informs the communications library when-
ever it detects an I/O event on any of the sockets that the library tells it to watch. Once
the library receives confirmation of the completion of the non-blocking control connection, it
sends the previously queued commands using non-blocking I/O, and watches for replies from

20

the server. The library then forwards replies from the server to the demonstration client,
by calling the callback functions that the demonstration program provided it. For the sake
of demonstration, these callbacks display the contents of the replies on the terminal. This
minimal program, which was written before the interactive demo program, is potentially
useful for speed tests, since the GUI display of 1ms integration updates would be too fast
to follow by eye, even if one were confident that the X server could keep up with this rate.
For example, using this program with the demo server, one can verify that the demo server
can’t generate integrations more frequently than 10ms. This is expected, because that is the
granularity of the Linux timers that govern the event loop of the virtual driver in the CCB
server program.

This program also provides a simple working example of how to use the C interface, and
can act as a basis for custom test programs, such as one that writes integrated data to disk
for later examination. Having said this, the Tcl interface described later is probably more
convenient for quick throw-away test programs.

2.7 Run-time configuration files

Currently, the communications library of the CCB-server requires one configuration file, as
described below. In future there could conceivably be more. By default, the directory in
which these files are installed is /usr/local/etc/, but this can be changed during installation,
as described earlier on page 17.

2.8 The ccb authorized ips configuration file

This configuration file lists the host computers that are authorized to connect to the CCB
server. It consists of one IP address per line. Within these addresses, each numeric field can
optionally be replaced with a * wildcard. For example, the following two lines authorize all
computers within the Green Bank subnet, plus the author’s computer at Caltech.

192.33.116.* # All Green-Bank computers.

131.215.102.18 # The author’s computer at Caltech

As illustrated, comments can be included. These start from a ’#’ character and extend to
the end of the line.

21

Chapter 3

The common parts of the CCB server

and client APIs

3.1 The configuration of the CCB

CCB configuration parameters are exchanged with the client and server libraries using CCB-
Config objects. Since these objects are opaque, external functions must be used both to
allocate them, and to modify and query their contents. This section describes these func-
tions.

The new CCBConfig() function allocates CCBConfig objects from the heap, and initializes
them with the default power-on configuration of the CCB. On error it returns NULL.

CCBConfig *new_CCBConfig(void);

To reclaim the resources of a redundant CCBConfig object, the del CCBConfig function must
be called to return the object to the heap.

CCBConfig *del_CCBConfig(CCBConfig *cnf);

The ccb default config() function can be used to replace the current configuration in a CCB-
Config object with the power-on-default configuration of the CCB. It returns non-zero and
sets errno to EINVAL if its argument is NULL. Otherwise it returns 0.

int ccb_default_config(CCBConfig *cnf);

22

The ccb copy config() function copies the contents of the configuration object, orig, to the
configuration object dest. It returns non-zero and sets errno to EINVAL if either of its
arguments is NULL. Otherwise it returns 0.

int ccb_copy_config(const CCBConfig *orig, CCBConfig *dest);

The ccb check config() function checks whether the configuration parameters installed within
a given configuration object are valid, and returns 0 if they are. Otherwise, it returns non-zero
and places an error message in the buffer that the caller passes via the errmsg argument. The
allocated dimension of this buffer must be provided in the errdim argument. Error messages
whose length, including the standard ’\0’ terminator, exceed this size are truncated to fit.

int ccb_check_config(CCBConfig *cnf, size_t errdim, char *errmsg);

The CCB configuration parameters are partitioned into a number of groups. These groups
are enumerated by the CCBConfigType datatype. Note that the values are integer powers of
two, such that their values correspond to single bits within an integer.

typedef enum {

CCB_CNF_PHASE_SWITCHES = 1, /* Phase-switch parameters */

CCB_CNF_CAL_DIODES = 2, /* The calibration-diode parameters */

CCB_CNF_TIMING = 4, /* The hardware timing parameters */

CCB_CNF_SAMPLER = 8, /* The sampler configuration parameters */

/*

* The union of all of the above.

*/

CCB_CNF_ALL = CCB_CNF_PHASE_SWITCHES | CCB_CNF_CAL_DIODES |

CCB_CNF_TIMING | CCB_CNF_SAMPLER

} CCBConfigType;

The ccb diff config() function compares two CCB configuration objects and returns the bit-
wise union of the enumerators of the configuration groups whose parameters differ.

unsigned ccb_diff_config(CCBConfig *ca, CCBConfig *cb);

The following sub-sections describe the functions that are used to set and query the pa-
rameters of each of the configuration groups within a CCB configuration object. Each of
the querying functions returns the parameters as a group, encapsulated within a structure.
The ccb set config() function provides a means to set the whole configuration using these
encapsulating arguments.

23

int ccb_set_config(CCBConfig *cnf,

const CCBPhaseSwitchCnf *phase,

const CCBCalDiodeCnf *cal,

const CCBTimingCnf *timing,

const CCBSamplerCnf *sampler);

Since any of the configuration arguments can be NULL, one can use this function to update
either the whole configuration or just a subset of the configuration groups. The datatypes
of the configuration arguments are described in detail in the following sections. On error,
this function returns non-zero and sets errno accordingly. Otherwise it returns 0.

3.1.1 The configuration of the phase switches

The digital backend generates two phase-switch TTL control signals, both of which are used
by the 1cm receiver, and only one of which is used by the 3mm receiver. The CCB server
supports the 16 phase-switching modes illustrated in figure 3.1.

Each row of this diagram displays the 4 possible cycles of a particular combination of active
switches, with each of these cycles corresponding to a different pair of initial phase-switch
states.

Note that whereas the number of A/D samples per phase-switch state in this diagram is just
an example of what can be configured, the number of phase-switch states per cycle is fixed
by the number of switches that are active, and is thus not otherwise configurable.

The configuration of the phase switches within a CCB configuration object can be changed
by calling ccb set phase switch cnf().

int ccb_set_phase_switch_cnf(CCBConfig *cnf,

unsigned short active_switches,

unsigned short closed_switches,

unsigned short samp_per_state);

The arguments of this function are interpreted as follows.

• Which switches are active? (active switches)

This specifies the set of phase switches that are to be switched during phase-switching
cycles, expressed as a bitwise union of CCBPhaseSwitches enumerators.

typedef enum {

CCB_NO_PHASE_SWITCHES = 0, /* Neither of the phase switches */

24

Figure 3.1: Example phase-switching cycles

25

CCB_PHASE_SWITCH_A = 1, /* phase switch A */

CCB_PHASE_SWITCH_B = 2, /* phase switch B */

CCB_ALL_PHASE_SWITCHES = /* Both phase switches */

CCB_PHASE_SWITCH_A | CCB_PHASE_SWITCH_B

} CCBPhaseSwitches;

Any phase switches that aren’t specified to be switched, are held in the positions
indicated by the closed switches argument.

• Which switches start closed? (closed switches)

This argument specifies the set of phase switches that are to be on at the start of each
new phase-switch cycle, expressed as a bitwise union of CCBPhaseSwitches enumerators.

• Samples per phase-switch state (samp per state)

This parameter configures the number of A/D samples that are integrated between
changes in the states of either phase-switch. The minimum supported value is given by
the CCB MIN SAMP PER STATEmacro, which is defined, in ccbconstants.h, as follows:

#define CCB_MIN_SAMP_PER_STATE 250 /* 25us */

The ccb set phase switch cnf() function normally returns zero, but returns non-zero and sets
errno appropriately on error. Beware that a successful return doesn’t necessarily mean that
the configuration is valid when combined with other configuration parameters. To verify this,
the ccb check config() function should be called once all of the configuration parameters have
been set to their desired values.

The configuration parameters of the phase switches within a CCB configuration object can
be queried using the ccb get phase switch cnf() function.

int ccb_get_phase_switch_cnf(const CCBConfig *cnf,

CCBPhaseSwitchCnf *pars);

This returns the phase-switch configuration parameters in the variable pointed at by the pars
argument. This is a variable of type CCBPhaseSwitchCnf.

typedef struct {

unsigned short active_switches; /* Which switches are active? */

unsigned short closed_switches; /* Which switches start closed? */

unsigned short samp_per_state; /* ADC samples per phase-switch */

/* state. */

} CCBPhaseSwitchCnf;

26

The members of this datatype have the same meanings as the synonymous arguments of the
ccb set phase switch cnf() function.

The ccb get phase switch cnf() function normally returns zero, but if either cnf or pars are
NULL, it returns non-zero and sets errno to EINVAL.

3.1.2 The configuration of the calibration diodes

The digital backend generates two noise-diode TTL control signals, both of which are used
by the 1cm receiver, and only one of which is used by the 3mm receiver. Since the device
driver sets the on/off state of these diodes at the boundaries between integrations, each
cal-diode state lasts an integral number of integrations. For each scan it is thus necessary
to specify the sequence of states that the noise-diodes should go through, and how many
integrations each state should last. This sequence starts with the first integration of the
scan, and thereafter is repeated indefinitely until the next scan is started. Since it isn’t clear
how many calibration steps might be needed for future observations, the maximum number
of steps is parameterized as CCB MAX NCAL, which is defined in the public include file of
the communications library.

enum {CCB_MAX_NCAL=32}; /* The maximum number of calibration steps */

The configuration of the calibration diodes within a CCB configuration object is changed by
calling the ccb set cal diode cnf() function.

int ccb_set_cal_diode_cnf(CCBConfig *cnf,

unsigned short ncal,

const short *diode_states,

const unsigned long *diode_times);

The arguments of this function, are as follows.

• The number of calibration steps (ncal)

The number of steps in the calibration diode state machine. This must be less than or
equal to CCB MAX NCAL.

Note that a value of zero can be used if the calibration diodes are to be left turned off
throughout the parent scan.

• The ncal calibration diode states (diode states)

The first ncal elements of this array specify the set of calibration diodes that are to
be turned on for the duration of the corresponding step of the calibration diode state
machine. Each element is a bitwise union of CCBCalDiodes enumerators.

27

typedef enum {

CCB_NO_CAL_DIODES = 0, /* Neither calibration diode */

CCB_CAL_DIODE_A = 1, /* Calibration diode A */

CCB_CAL_DIODE_B = 2, /* Calibration diode B */

CCB_ALL_CAL_DIODES = /* Both calibration diodes */

CCB_CAL_DIODE_A | CCB_CAL_DIODE_B

} CCBCalDiodes;

This argument can be NULL if ncal is 0.

• The durations of the ncal cal-diode states (diode times)

Each element of the first ncal elements of this parameter, specifies the duration of
the state in the corresponding element of the diode states parameter. The duration is
interpreted as an integer number of integrations.

For the minimum integration time of 1ms, the use of a 32-bit value translates to a
maximum duration of 48 days. This is clearly overkill, but a 16-bit value would only
support up to 65 seconds per state, which might not be enough.

This argument can be NULL if ncal is 0.

The ccb set cal diode cnf() function normally returns zero, but returns non-zero and sets
errno appropriately on error. Beware that a successful return value doesn’t necessarily mean
that the configuration is valid when combined with other configuration parameters. To verify
this, the ccb check config() function should be called once all of the configuration parameters
have been set to their desired values.

The calibration-diode configuration parameters, within a given CCB configuration object,
can be queried by calling the ccb get cal diode cnf() function.

int ccb_get_cal_diode_cnf(const CCBConfig *cnf,

CCBCalDiodeCnf *pars);

This returns the cal-diode configuration parameters in the variable pointed at by the pars
argument. This is a variable of type CCBCalDiodeCnf.

typedef struct {

unsigned short ncal; /* The number of steps per */

/* calibration cycle. */

unsigned short diode_states[CCB_MAX_NCAL]; /* The set of calibration */

/* diodes that are ON */

/* during each of the */

28

/* ’ncal’ steps. */

unsigned long diode_times[CCB_MAX_NCAL]; /* The number of */

/* integrations of each */

/* of the ’ncal’ steps. */

} CCBCalDiodeCnf;

The members of this datatype have the same meanings as the synonymous arguments of the
ccb set cal diode cnf() function.

The ccb get cal diode cnf() function normally returns zero, but if either cnf or pars are NULL,
it returns non-zero and sets errno to EINVAL.

3.1.3 The configuration of hardware timing parameters

The hardware timing configuration parameters determine the durations of configurable timers
in the CCB hardware. Within a CCB configuration object, these parameters are changed
by calling ccb set timing cnf().

int ccb_set_timing_cnf(CCBConfig *cnf,

unsigned short phase_switch_dt,

unsigned long diode_rise_dt,

unsigned long diode_fall_dt,

unsigned long integ_period,

unsigned short roundtrip_dt,

unsigned short holdoff_dt);

The arguments of this function are interpreted as follows.

• Phase-switch blanking interval (phase switch dt)

This specifies how much of the sample interval is blanked, while the phase switches
settle after phase-switch transitions. It is expressed as an integer multiplier of 100ns.

• Calibration diode rise time (diode rise dt)

This specifies the interval during which the calibration diode signals are unstable after
being newly switched on. It is expressed as an integer multiplier of 100ns.

• Calibration diode fall time (diode fall dt)

This specifies the interval during which any residual calibration diode signals remain
present after being newly switched off. It is expressed as an integer multiplier of 100ns.

29

• The integration period (integ period)

This specifies the number of phase-switch cycles that are to be co-added to form the
integrations that are sent to the manager. The physical length of time that this cor-
responds to depends on the number of samples per phase-switch cycle, and can be
calculated by calling the ccb integration duration() function.

• The round-trip propagation delay (roundtrip dt)

This specifies the expected delay between the CCB hardware toggling any of the switch
control-lines, and the first effects of this reaching the CCB digital integrators. The
roundtrip dt parameter specifies this in units of 100ns, and has a maximum value of
CCB MAX ROUNDTRIP DT, which is a macro which is defined in ccbconstants.h, as
follows.

#define CCB_MAX_ROUNDTRIP_DT 255 /* 8 bits */

The specified roundtrip delay should be a lower-limit to the expected delay, such that
the CCB hardware can safely assume that all data that arrive at the integrators for
this long after a switch-change is commanded, can be assumed to be associated with
the previous states of the phase and cal-diode switches. The underestimate of this
parameter should be compensated by overestimating the cal-diode and phase-switch
settling times.

Note that the predictable contributions to this delay include the propagation delay
of the opto-isolators at the ends of the receiver control-cables, the group-delay of the
2MHz low-pass Bessel filters, and the pipeline delays of the ADCs and the input latches
of the CCB hardware. These add up to about 700ns. When the group-delays of the
RFI filters, control-signal pulse shapers, and the rest of the electronics are taken into
account, the final round-trip delay will thus probably be over 1µs. The maximum
supported delay of 255× 100ns, is thus 25 times greater than the expected value.

The default value of roundtrip dt is 5, which corresponds to a physical delay of 500ns,
which is probably overly-cautious.

• The interrupt-generation holdoff delay (holdoff dt)

This sets the minimum interval between the interrupts that the CCB hardware can
generate, and has three goals.

1. To prevent the CPU from locking up if an interrupt source in the CCB hardware,
for some unforeseen reason, attempts to generate interrupts at an extreme rate.

2. To reduce the number of interrupts that need to be sent, by allowing interrupts
of multiple interrupt sources to be signaled by one hardware interrupt.

3. To set the repeat interval at which unacknowledged interrupts are to be signaled
again.

30

The actual holdoff interval that corresponds to a given value of the holdoff dt parameter,
is given by.

dt = 25.6µs× (holdoff dt + 1) (3.1)

Thus, since the holdoff dt parameter is allowed to take any value in the range 0-CCB-
MAX HOLDOFF DT, where CCB MAX HOLDOFF DT is a macro which is defined in
ccbconstants.h, as follows,

#define CCB_MAX_HOLDOFF_DT 31 /* 5 bits */

the supported range of holdoff intervals is 25.6µs – 0.8192ms. The lower-limit was
chosen to be just over the claimed average interrupt latency of the Linux 2.6 kernel, in
an attempt to ensure that regardless of the configuration parameters, the Linux kernel
will not be overwhelmed by CCB interrupts. The upper-limit is set to be less than
the minimum, 1ms, integration time. This is necessary, since integration-configuration
interrupts must be generated and responded to, on average, within less than the in-
tegration time. The default value of the holdoff dt parameter is 7, which translates
to a physical holdoff interval of 204.8µs. Note that this is larger than the reported
181µs maximum interrupt latency of the Linux 2.6 kernel, and should thus reduce the
probability of interrupts having to be redundantly signaled when not acknowledged
quickly. At the same time, it is small enough to allow several integration-configuration
interrupts to be generated and responded to per integration period.

Note that the above-quoted characteristics of the Linux 2.6 kernel were obtained from
an article at the following URL.

http://www.linuxdevices.com/articles/AT7751365763.html

The ccb set timing cnf() function normally returns zero, but returns non-zero and sets errno
appropriately on error. Beware that a successful return doesn’t necessarily mean that the
configuration is valid when combined with other configuration parameters. To verify this,
the ccb check config() function should be called once all of the configuration parameters have
been set to their desired values.

The configuration parameters of the hardware timing within a CCB configuration object can
be queried using the ccb get timing cnf() function.

int ccb_get_timing_cnf(const CCBConfig *cnf, CCBTimingCnf *pars);

This returns the timing configuration parameters in the variable pointed at by the pars
argument. This is a variable of type CCBTimingCnf.

31

typedef struct {

unsigned short phase_switch_dt; /* The settling time of the phase */

/* switches. */

unsigned long diode_rise_dt; /* The rise time of a cal diode */

unsigned long diode_fall_dt; /* The fall time of a cal diode */

unsigned long integ_period; /* The integration period */

unsigned short roundtrip_dt; /* The delay between toggling a */

/* receiver control line and */

/* the first effects reaching */

/* the CCB integrators. */

unsigned short holdoff_dt; /* The minimum time between */

/* generating CPU interrupts */

/* is 25.6us*(holdoff_dt+1) */

} CCBTimingCnf;

The members of this datatype have the same meanings as the synonymous arguments of the
ccb set timing cnf() function.

The ccb get timing cnf() function normally returns zero, but if either cnf or pars are NULL,
it returns non-zero and sets errno to EINVAL.

3.1.4 The configuration of sampler control parameters

The sampler configuration parameters control the digitized samples that are integrated in
normal integration mode, and collected verbatim, in dump mode. Within a CCB configura-
tion object, these parameters are changed by calling ccb set sampler cnf().

int ccb_set_sampler_cnf(CCBConfig *cnf, CCBSampleType sample_type);

The arguments of this function are interpreted as follows.

• The digitized samples to integrate or dump (sample type)

This argument specifies what type of digitized samples are to be used by the hardware.
These can be either the real ADC samples, or fake pseudo-random samples. The latter
are used for testing the digital parts of the CCB hardware. The value of this argument
must be one of the following enumerated values.

typedef enum {

CCB_ADC_SAMPLES, /* Use the real ADC samples */

CCB_FAKE_SAMPLES /* Use fake pseudo-random samples */

} CCBSampleType;

32

The default configuration sets this parameter to CCB ADC SAMPLES.

The ccb set sampler cnf() function normally returns zero, but returns non-zero and sets errno
appropriately on error. Beware that a successful return doesn’t necessarily mean that the
configuration is valid when combined with other configuration parameters. To verify this,
the ccb check config() function should be called once all of the configuration parameters have
been set to their desired values.

The configuration parameters of the hardware sampler within a CCB configuration object
can be queried using the ccb get sampler cnf() function.

int ccb_get_sampler_cnf(const CCBConfig *cnf, CCBSamplerCnf *pars);

This returns the sampler configuration parameters in the variable pointed at by the pars
argument. This is a variable of type CCBSamplerCnf.

typedef struct {

unsigned short sample_type; /* The type of digitizer samples */

} CCBSamplerCnf;

The members of this datatype have the same meanings as the synonymous arguments of the
ccb set sampler cnf() function.

The ccb get sampler cnf() function normally returns zero, but if either cnf or pars are NULL,
it returns non-zero and sets errno to EINVAL.

3.2 Integration and scan timing information

The details of the timing of an integration are illustrated in figure 3.2. There are two
measures of integration time that are of interest to users and the manager.

1. The integration-time, which is the total amount of time during which data are being
accumulated in the integration of a given phase switch state.

2. The integration-duration, which is the total amount of clock time that passes between
the start of one integration period and the start of the next.

The integration-time is shorter than the integration-duration, both because the latter has to
be split evenly between the separate integrations of different phase-switch bins, and because
ADC samples are blanked during phase-switch transitions.

33

Figure 3.2: The anatomy of a data-scan or intra-scan

34

3.2.1 Interval computations

Since the duration of a scan may exceed the number of 100ns clock ticks that will fit within
C’s unsigned long integer datatype, time intervals returned by functions in this section are
expressed using a pair of integers, one recording the number of full seconds in the interval,
and the other containing the remaining nanoseconds. These integers are encapsulated within
the CCBInterval datatype.

typedef struct { /* A time interval (t=sec+1.0e-9*ns) */

unsigned long sec; /* The number of complete seconds */

unsigned long ns; /* The remaining number of nano-seconds */

} CCBInterval;

On a computer that has 32-bit long integers, CCBInterval datatypes can hold time intervals
between 0ns and 136 years, with nano-second precision. Note however that the hardware
clock has a period of 100ns, so this sets the actual precision achievable.

The following functions are provided for manipulating intervals that are stored this way.

ccb scale interval()

The ccb scale interval() function returns the product of a time interval and an unsigned long
integer.

int ccb_scale_interval(CCBInterval *dt, unsigned long factor,

CCBInterval *ans);

A pointer to the time interval to be scaled is presented via the dt argument, the scale factor
is specified via the factor argument, and the answer is recorded within the variable pointed
to by the ans argument. The ans argument and the dt argument can be pointers to the same
variable, in which case the answer will replace the original time interval within dt. Normally
the return value of the function is 0. If dt or ans are NULL, or the result overflows the huge
bounds of the CCBInterval datatype, then errno is set accordingly, and the function returns
1.

ccb add intervals()

The ccb add intervals() function computes the sum of two time intervals.

int ccb_add_intervals(CCBInterval *dt1, const CCBInterval *dt2,

CCBInterval *sum);

35

Pointers to the variables that contain the two intervals to be added, are passed via the dt1
and dt2 arguments. The sum is assigned to the variable pointed to by the sum argument,
which is allowed to be the same variable as that pointed to by dt1. Normally the return
value of the function is 0, but if any of the arguments are NULL, or the sum overflows the
bounds of the CCBInterval datatype, then errno is set accordingly, and the function returns
1.

ccb subtract interval()

The ccb subtract interval() function subtracts a small time interval from a larger time interval.

int ccb_subtract_interval(CCBInterval *dt1, CCBInterval *dt2,

CCBInterval *dif);

Normally ccb subtract interval() places the difference dt1 - dt2 in the dif argument and returns
zero, but if the time interval being subtracted is greater than the interval that it is being
subtracted from, or any of the arguments is NULL, dif is left unchanged, ccb subtract interval()
returns 1 to indicate that an error occurred, and errno is set accordingly.

Note that dif and dt1 are allowed to point at the same variable, thus implementing the
equivalent of dt1 -= dt2.

ccb compare intervals()

The ccb compare intervals() function compares two time intervals and returns an indication
of their ordering.

int ccb_compare_intervals(const CCBInterval *dt1,

const CCBInterval *dt2);

The return value is -1 if dt1 < dt2, 0 if dt1 == dt2, or 1 if dt1 > dt2.

ccb zero interval()

The ccb zero interval() function initializes a time interval to zero.

void ccb_zero_interval(CCBInterval *dt);

36

ccb interval is zero()

The ccb interval is zero() function returns non-zero if its argument denotes an interval of zero
seconds and zero nanoseconds.

int ccb_interval_is_zero(CCBInterval *dt);

ccb clock interval()

The ccb clock interval() function converts from a time expressed as a number of 100ns hard-
ware clock ticks, to a time interval recorded in a CCBInterval datatype.

void ccb_clock_interval(unsigned long ticks, CCBInterval *dt);

The time interval that corresponds to the number of clock ticks in the ticks argument, is
returned in the variable pointed to by the dt argument.

3.2.2 Cal-diode and phase-switch settling times

At the start of some integrations, calibration-diodes and/or phase-switches change state, and
the effects on the detected signals take some time to settle. During this settling time, the
hardware flags integrations that should be blanked by the off-line software. Similarly, during
each phase-switch cycle, each change in the states of the phase switches, is followed by ADC
samples being discarded while the signals settle to their new values. The settling times of
the calibration-diodes potentially depends on whether they are being turned on or off, so in
order to compute the settling time, both before and after states of the diodes are needed.

The overall settling time of a given set of simultaneously commanded switch transitions, is the
maximum of the settling times of the individual contributing transitions. This is calculated
by the ccb settling time() function, which takes the pre-transition and post-transition states
of the calibration diodes and phase-switches and returns the longest settling time of these
transitions.

int ccb_settling_time(const CCBConfig *cnf,

unsigned prev_cal, unsigned next_cal,

unsigned prev_phs, unsigned next_phs,

CCBInterval *dt)

The cnf argument specifies the configuration of the CCB in the parent scan. The prev cal
and next cal arguments specify the pre-transition and post-transition states of the calibration

37

diodes, expressed as bitwise unions of CCBCalDiodes enumerators, and the prev phs and next-
phs arguments specify the pre-transition and post-transition states of the phase switches,
expressed as bitwise unions of CCBPhaseSwitches enumerators. The dt argument should be
a pointer to the CCBInterval variable in which to return the settling time.

The return value of ccb settling time() is normally 0, but if an error prevents the settling
time from being computed, errno is set accordingly, and 1 is returned.

3.2.3 The number of phase-switch states per cycle

The total amount of time within an integration that is lost to phase-switch blanking, depends
on the number of phase-switch states within a phase-switching cycle. This, as previously
illustrated in figure 3.1, depends on how many phase-switches are configured to be switching,
and can be calculated as:

measurements per cycle = 2nswitching (3.2)

Based on this equation, the ccb cycle length() function returns the number of phase-switch
states per cycle, corresponding to a particular value of the active switches argument of ccb-
set phase switch cnf() (see page 24).

unsigned ccb_cycle_length(unsigned active_switches);

3.2.4 The physical duration of an integration period

The number of ADC samples per integration is the product of three terms; the number
of phase-switch cycles per integration (integ period), the number of phase-switch states per
phase-switch cycle, as returned by ccb cycle length(), and the number of A/D samples per
phase-switch state, given by the samp per state configuration parameter.

The ccb integration duration() function performs this calculation.

int ccb_integration_duration(const CCBConfig *cnf, CCBInterval *dt);

The cnf argument specifies the configuration of the CCB during the target scan, and the
integration period is returned in the variable pointed to by the dt argument.

The return value of ccb integration duration() is normally 0, but if an error prevents the
integration duration from being computed, errno is set accordingly, and 1 is returned.

38

3.2.5 The effective integration time

The actual amount of time per integration period that is spent integrating data, is less
than the period between the start of one integration and the start of the next, due to the
blanking of ADC samples during phase-switch transitions. The actual total integration time
is calculated by the ccb integration time() function.

int ccb_integration_time(const CCBConfig *cnf, CCBInterval *dt);

The cnf argument specifies the configuration of the target scan, and the corresponding inte-
gration time is returned in the variable pointed to by the dt argument.

The return value of ccb integration time() is normally 0, but if an error prevents the integra-
tion time from being computed, errno is set accordingly, and 1 is returned.

3.2.6 The duration of a scan

The physical duration of a scan of a known number of integration periods is calculated by
the ccb scan duration() function. This function simply uses ccb scale interval() to multiply
the return value of ccb integration duration() by the specified number of integration periods.

int ccb_scan_duration(const CCBConfig *cnf,

unsigned long integrations,

CCBInterval *scan_dt);

The cnf argument specifies the configuration of the target scan. The integrations argument
specifies the number of integrations within the scan, and the answer is returned in the
variable pointed to by the scan dt argument.

The return value of ccb scan duration() is normally 0, but if an error prevents the scan
duration from being computed, 1 is returned, and the contents of scan dt are undefined.

3.2.7 The number of integrations that fit within a time interval

The number of complete integrations that will fit within a given time interval, along with
the remaining time of any final fractional integration, can be calculated with the ccb integ-
per interval() function.

int ccb_integ_per_interval(const CCBConfig *cnf, CCBInterval *duration,

unsigned long *n, CCBInterval *rdt);

39

The cnf argument specifies the configuration of the target scan. The duration argument
specifies the desired physical time-duration. The number of complete integrations that would
fit into the specified time duration, is assigned to the variable pointed to by the n argument.
The remaining time interval of any fractional final integration needed to reach the specified
time interval, is assigned to the rdt argument. Note that if the value returned in either of
the n and rdt arguments is unneeded, the corresponding argument pointer can be passed as
NULL.

The return value of ccb integ per interval() is normally 0, but if an error prevents the function
from completing successfully, 1 is returned, and the values of *n and *rdt become undefined.

3.2.8 The number of integrations in a calibration cycle

A single calibration cycle consists of up to CCB MAX NCAL calibration-diode states, with
each state being sustained for an integer number of integrations, as dictated by ccb set cal-
diode cnf(). The ccb cal cycle length() function totals up the number of integrations spent
in each of these states, and thus returns the number of integrations taken to perform a single
calibration cycle.

int ccb_cal_cycle_length(const CCBConfig *cnf, unsigned long *ninteg);

The cnf argument specifies the configuration of the target scan, and the total number of inte-
grations in a calibration-cycle is returned in the variable pointed to by the ninteg argument.

The return value of ccb cal cycle length() is normally 0, but if an error prevents the scan
duration from being computed, 1 is returned, and the value of *ninteg is undefined.

3.3 Timestamps

There are various places where the date and time of an event need to be recorded and
communicated with high accuracy. In particular every telemetry message includes a time-
stamp which tells the manager when the corresponding event occurred. In both the server
and client libraries, these timestamps are exchanged in CCBTimeStamp structures.

typedef struct {

unsigned long mjd; /* The Modified Julian Day number */

unsigned long sec; /* The number of seconds into the day */

unsigned long ns; /* The number of nano-seconds into */

/* the specified second. */

} CCBTimeStamp;

40

The members of this structure are interpreted as follows.

• mjd

This is the date at which the telemetry message was assembled. The date is expressed
in UTC, as a Modified Julian Day number. Specifically, this is the integer part of
(Julian Date− 2400000.5).

• sec

This is the time of day at which the telemetry message was assembled, expressed as
the number of seconds that have passed since 0H UTC on the day indicated by the
mjd argument.

• ns

This is the number of nano-seconds that have elapsed since the start of the second that
is indicated by the sec parameter.

The following utility functions manipulate timestamps.

3.3.1 Getting the current date and time

The ccb get timestamp() function returns the current date and time in a specified CCBTimeS-
tamp structure.

int ccb_get_timestamp(CCBTimeStamp *t);

The current date and time are returned in the variable pointed to by the t argument. The
function normally returns 0, but on error returns 1 and sets errno accordingly.

3.3.2 Comparing two timestamps

The ccb compare timestamps() function compares the dates and times in two timestamps and
returns an indication of their ordering.

int ccb_compare_timestamps(CCBTimeStamp ta, CCBTimeStamp tb);

The return value of this function is -1, 0 or 1, depending on whether ta < tb, ta==tb, or ta
> tb respectively.

41

3.3.3 Computing the amount of time remaining until a given time

The ccb time until() function returns the amount of time remaining until a specified time,
returning a time-interval of zero if the time has already passed.

int ccb_time_until(CCBTimeStamp ts, CCBInterval *dt);

The time of the event of interest is passed in the ts argument, and the amount of time
remaining before that time is passed is returned in the variable pointed at by the dt argument.
The returned interval is obviously out of date as soon as it is returned, and is thus of limited
use. It was written for the CCB simulator incorporated in the ccbserver program, where the
actual timing achieved isn’t critical.

3.3.4 Adding a time-interval to a timestamp

The ccb add to timestamp() function computes the timestamp of an event a given amount
of time in the future of an existing timestamp.

int ccb_add_to_timestamp(const CCBTimeStamp *ta,

const CCBInterval *dt,

CCBTimeStamp *tb);

The existing timestamp should be in the value pointed at by the ta argument, and the time-
interval to be added to this in the value pointed at by the dt argument. The addition of
these two values is returned in the variable pointed at by the tb argument. Note that tb and
ta are allowed to point at the same variable.

3.3.5 Converting a time t value to a CCBTimeStamp value

The ccb time to timestamp() function takes a time t value returned by any of the functions
in the standard C library, plus a fraction of a second expressed in nanoseconds, and returns
the CCBTimeStamp equivalent.

int ccb_time_to_timestamp(time_t t, unsigned long ns,

CCBTimeStamp *ts);

The result is returned in the variable pointed to by the ts argument. The return value of
ccb time to timestamp() is normally 0, but if an error occurs, 1 is returned, and errno is set
accordingly.

42

3.3.6 Getting the clock time from a timestamp

The ccb hms of timestamp() function, returns the clock time of a timestamp in hours, minutes
and seconds.

void ccb_hms_of_timestamp(CCBTimeStamp ts, unsigned *hours,

unsigned *mins, unsigned *secs);

The clock time is returned in the variables pointed to by the hours, minutes and seconds
arguments.

43

Chapter 4

The CCB client communications API

The following sections describe the functions that the CCB communications library provides
for use by the manager. The following illustrates a typical time sequence of function calls
for a single-threaded manager.

1. Create the object needed to talk to a CCB server:
char errmsg[CCB_MAX_LOG];

CCBClientLink *cl = new_CCBClientLink(sizeof(errmsg), errmsg);

if(!cl) {

fprintf(stderr, "%s\n", errmsg);

exit(1);

}

2. Create a CCB configuration object:
CCBConfig *cnf = new_CCBConfig();

if(!cnf)

return ERROR;

3. Tell the CCBClientLink object how to deliver log messages:
if(ccb_log_msg_callback(cl, ...))

return ERROR;

4. Install message-received callback functions:
if(ccb_cmd_error_callback(cl, ...) ||

ccb_status_reply_callback(cl, ...) ||

ccb_integ_msg_callback(cl, ...) ||

ccb_monitor_msg_callback(cl, ...))

return ERROR;

5. Initiate a non-blocking connection to a CCB server:
if(ccb_client_connect(cl, host, 1))

return ERROR;

44

6. Load the CCB device driver
if(ccb_queue_load_driver_cmd(cl, id, CCB_NORMAL_DRIVER))

return ERROR;

7. Set up the initial CCB configuration:
if(ccb_set_phase_switch_cnf(cnf, ...) ||

ccb_set_cal_diode_cnf(cnf, ...) ||

ccb_set_timing_cnf(cnf, ...) ||

ccb_set_sampler_cnf(cnf, CCB_ADC_SAMPLES))

return ERROR;

8. Enable all telemetry streams
if(ccb_queue_telemetry(cl, id, CCB_ALL_STREAMS))

return ERROR;

9. Queue the first start-scan command:
if(ccb_queue_start_scan_cmd(cl, id, cnf, ...))

return ERROR;

10. Now invoke the manager’s event loop:
while(!shutdown_requested) {

fd_set rfds; /* The set of file-descriptors to watch */

/* for readability */

fd_set wfds; /* The set of file-descriptors to watch */

/* for writability */

int nready; /* The number of file descriptors ready */

/* for I/O. */

int maxfd; /* The maximum of the file descriptors in */

/* ’rfds’ and ’wfds’. */

/*

* Clear the file-descriptor sets.

*/

FD_ZERO(&rfds);

FD_ZERO(&wfds);

maxfd = 0;

/*

* Add the file-descriptors that the library wants us to watch,

* to rfds and wfds.

*/

if(ccb_client_select_args(cl, &rfds, &wfds, &maxfd))

return ERROR;

/*

* Wait indefinitely for the specified I/O events.

*/

nready = select(maxfd+1, &rfds, &wfds, NULL, NULL);

45

/*

* Error?

*/

if(nready < 1)

return ERROR;

/*

* Perform the types of I/O indicated by select().

*/

else if(ccb_client_communicate(cl,

ccb_client_selected_io(cl, &rfds, &wfds)))

return 1;

}

11. Disconnect from the current CCB server:
ccb_client_disconnect(cl);

12. Reclaim the CCB communication resources:
cl = del_CCBClientLink(cl);

As documented later, note that when ccb client communicate() receives messages, it calls the
appropriate callback function from the callbacks that were registered in step 4, to deliver
these messages to the manager.

4.1 Include files

The datatype-declarations, function-prototypes and constants of the public API of the CCB-
client communications-library are contained in the following include files.

• ccbclientlink.h

This header-file contains all of the public function-prototypes and datatype declarations
that are specific to the client side of the communications link.

• ccbcommon.h

This header-file contains the public function-prototypes and datatype declarations that
are shared between the client and server communications libraries. It need not be
included explicitly by the client code, since it is already included by ccbclientlink.h.

• ccbconstants.h

This header-file contains all of the constants that affect the operation of the commu-
nications link. It need not be included explicitly by client code, since it is already
included by ccbcommon.h.

46

4.2 The CCB-client communications library

The library that implements the CCB client-communications API, is a shared library called
libccbclientlink.so. Under Solaris and Linux, this filename is actually a symbolic link to the
most recent version of the library.

Among other advantages, the use of a shared library rather than a static library has the
benefit, at least under Solaris and Linux, of allowing one to restrict which symbols are
exported into the name-space of the application. This not only prevents programs from
using unstable private interfaces, but also greatly reduces name-space pollution and the
possibility of symbol-name clashes.

Linking a C program with this library under either Linux or Solaris can be done as follows.

gcc -o foo *.o -lccbclientlink

Note that linkage instructions built into the shared library cause other required libraries,
such as -lsocket under Solaris, to be linked automatically.

4.3 Creating the client resources needed to talk to a

CCB server

All of the resources that are needed to communicate with a remote CCB server are encap-
sulated within an opaque CCBClientLink object. Each instance of a CCBClientLink object
is capable of communicating with a single CCB server at a time, so to simultaneously talk
to multiple CCB servers, multiple CCBClientLink objects must be created, with one object
assigned to each server. Alternatively, if only one backend is to be controlled/monitored
at a time, a single CCBClientLink object can initially be connected to one CCB server, and
then later be connected to a different CCB server. To create a CCBClientLink object, it is
necessary to call new CCBClientLink().

CCBClientLink *new_CCBClientLink(size_t errdim, char *errmsg);

If successful, this function allocates and returns a pointer to an opaque CCBClientLink object.
This object should thereafter be passed to all other CCB communications-library functions.
Note that this function does not itself initiate a connection to a CCB server. That is the
role of the ccb client connect() function, which will be described below.

On error new CCBClientLink() returns NULL, and places an error message in the buffer that
is pointed to by the errmsg argument. The allocated size of this buffer must be specified in
the errdim argument, such that if the length of an error message exceeds errdim-1 characters,

47

it can be truncated to fit. If truncation is necessary, and errdim is greater than 0, a ’\0’
terminator is placed in errmsg[errdim-1].

If new CCBClientLink() returns successfully, subsequent errors detected by library functions
are reported as log messages. If this happens before the manager has got around to calling
ccb log msg callback() to tell the library how to deliver log messages, the error message is
displayed to the local stderr. Thus, to ensure that all log messages get recorded for posterity,
it is important that the manager call ccb log msg callback() as soon as possible after new-
CCBClientLink() returns.

4.4 Connecting to a CCB server

The ccb client connect() function initiates a pair of connections to the control and telemetry
ports of the CCB server.

int ccb_client_connect(CCBClientLink *cl, const char *host,

int nonblocking);

The cl argument must be an object previously returned by new CCBClientLink(). If this
object is already connected to a CCB server, the existing connection is terminated before
the new one is initiated.

The value of the host argument should contain the numeric or textual IP address of the
target CCB server.

The nonblocking argument specifies whether ccb client connect() should initially place the
control and telemetry sockets in non-blocking I/O mode. Note that after ccb client connect()
returns, the manager can toggle the non-blocking behavior of the sockets by calling ccb client-
non blocking io().

If the nonblocking argument is zero, blocking socket I/O is used, and ccb client connect()
doesn’t return until it has either established both the control and telemetry connections, or
an error occurs.

Alternatively, if the nonblocking argument is non-zero, ccb client connect() may not get any
further than initiating the connections before returning. Watching for the completion of
the connections is left to subsequent calls to ccb client communicate(), in response to I/O
activity detected by the manager’s event loop.

Note that regardless of the value of the nonblocking argument, if the host argument contains
a textual address, ccb client connect() blocks the caller while it queries a name server for
the corresponding IP address. This is due to the non-existence of a non-blocking interface
to query name-servers. As such, if non-blocking behavior is required, it is best to supply a

48

numeric IP address in the host argument.

If ccb client connect() detects an error, it returns non-zero. Otherwise it returns 0 to indicate
successful connection initiation. When using blocking I/O, a successful return-value indicates
that both the telemetry and control connections have been completed successfully.

4.5 Disconnecting from a CCB server

The ccb client disconnect() function terminates the telemetry and control connections of a
CCBClientLink object.

void ccb_client_disconnect(CCBClientLink *cl);

If no connection is currently established, ccb client disconnect() does nothing. This function
is called internally by ccb client connect() before initiating a new connection, and also by
del CCBClientLink() before deleting a CCBClientLink object, so the manager probably won’t
need to call it explicitly.

4.6 Deleting a redundant CCBClientLink object

Once a CCBClientLink object is no longer needed, its resources can be returned to the system
by calling the del CCBClientLink() function.

CCBClientLink *del_CCBClientLink(CCBClientLink *cl);

This function both shuts down any CCB server connection associated with the specified
CCBClientLink object, and returns all dynamically allocated resources, associated with the
object, to the system. The function always returns NULL. This allows the caller to type:

CCBClientLink *cl;

...

cl = del_CCBClientLink(cl);

This sets the invalidated cl pointer variable to NULL, such that if any statement subse-
quently tries to access the deleted object through this pointer, it is rewarded with a tell-tale
segmentation fault, rather than producing unpredictable behavior.

49

4.7 Requesting non-blocking I/O

To prevent network congestion from blocking the manager process, when it could be doing
other things, the ccb client non blocking io() function allows the manager to place the client
sockets into non-blocking I/O mode. Note that this is redundant if the nonblocking argument
of new CCBClientLink() was non-zero when the CCBClientLink object was created.

int ccb_client_non_blocking_io(CCBClientLink *cl, int on);

This turns on non-blocking I/O when the on argument is non-zero, or turns it off when the
on argument is zero. On error, this function sets errno appropriately and returns non-zero.
Otherwise it returns zero to indicate success.

Used in conjunction with select() or poll() to perform I/O multiplexing, non-blocking I/O
allows the manager to do other things during network congestion.

In a multi-threaded manager this function should not be called when any other threads might
be reading from or writing messages to the CCB control and/or telemetry sockets.

4.8 ccb client communicate() – Perform client socket I/O

The ccb client communicate() function is responsible for all socket-level I/O over the control
and telemetry links. According to the contents of its io argument, it incrementally sends
previously queued outgoing control messages, receives incoming control-link replies, and/or
receives incoming telemetry messages.

int ccb_client_communicate(CCBClientLink *cl, unsigned io);

When non-blocking I/O is selected, the io argument, which tells ccb client communicate()
which forms of I/O to attempt, must contain a value returned by either ccb selected io()
or ccb polled io(), which are documented below. Alternatively, when blocking I/O has been
selected, and ccb client communicate() is being called separately by different threads, the
value of the io argument within a given thread must be chosen according to the type of I/O
that that thread has been given responsibility for, as described shortly.

The return value of ccb client communicate() is normally 0, but if an error occurs, errno is
set accordingly, and a non-zero value is returned.

50

4.9 Client I/O multiplexing

The client communications library expects to be told by the manager whenever I/O that it
wants to perform can be done. It assumes that the manager is either using an event loop
based on functions like select() or poll() to watch for the readability or writability of the
library’s sockets, or that it is devoting multiple threads to perform blocking I/O on these
sockets. Since only the library knows which types of I/O it wants the manager to watch for,
it provides facilities for keeping the manager informed of this.

The following subsections describe the facilities provided for different I/O multiplexing op-
tions.

4.9.1 Using the select() system call

When using select() to watch for I/O, the manager should use the ccb client select args()
function to augment the contents of the arguments that are to be passed to select(), according
to the needs of the manager’s CCBClientLink object.

int ccb_client_select_args(CCBClientLink *cl, fd_set *rfds,

fd_set *wfds, int *maxfd);

On input, the rfds argument is a pointer to an existing set of the file descriptors that the
caller wants select() to watch for readability. Similarly the wfds argument is a pointer to an
existing set of the file descriptors that the caller wants to watch for writability. Finally the
maxfd argument is a pointer to a variable that contains the maximum of all file descriptors
that the caller has placed in rfds and wfds. On return, rfds and wfds are augmented with the
file descriptors that *cl wants to have watched, and if any of these descriptors exceeded the
input value of *maxfd, it is updated accordingly. Normally this function returns 0, but on
error it returns non-zero.

Note that when subsequently passing these arguments to select() the first argument of select()
should be *maxfd + 1.

After select() returns, the sets of file descriptors that it found to be readable and/or writable
can be converted to the form required by the io argument of ccb client communicate() by
calling ccb client selected io().

unsigned ccb_client_selected_io(CCBClientLink *cl,

const fd_set *rfds,

const fd_set *wfds);

The rfds and wfds arguments are pointers to the sets of file descriptors that select() indicated
were readable and writable, respectively. The return value is the value to pass to ccb client-
communicate() to tell it what types of I/O to attempt.

51

4.9.2 Using the poll() system call

When using poll() to watch for I/O, the manager should use the ccb client poll args() function
to augment the contents of the arguments that poll() requires, according to the forms of I/O
that the manager’s CCBClientLink object is awaiting.

int ccb_client_poll_args(CCBClientLink *cl, int size,

struct pollfd *fds, int *nfds);

The fds argument is an array of dimension size, in which *nfds elements at the start of the
array are occupied. ccb client poll args() adds up-to two socket file descriptors to this array,
and increments *nfds accordingly. Note that size - *nfds must be at least 2. Normally this
function returns 0, but on error it returns non-zero.

After poll() subsequently returns, the sets of file descriptors that it found to be readable
and/or writable can be converted to the form required by the io argument of ccb client-
communicate() by calling ccb client polled io().

unsigned ccb_client_polled_io(CCBClientLink *cl,

const struct pollfd *fds,

int nfds);

The fds argument is the array in which ccb client poll args() placed its file descriptors, and
poll() subsequently flagged I/O events, and the nfds argument is the number of occupied
elements within this array. The return value is the value to pass to ccb client communicate()
to tell it what types of I/O to attempt.

4.9.3 Third party event handlers

When using an event handler which hides the call to select() or poll() behind a custom
API, the above functions clearly aren’t sufficient. To cope with this more general case, the
CCB communications library allows the application to register an optional callback function,
which the library calls whenever the library’s socket file descriptors change, and whenever
the I/O events that the event handler should be watching these sockets for, change.

The CCB CLIENT SOCKETS FN macro should be used for the declarations and prototypes
of suitable callback functions, and the CCBClientSocketsFn typedef can be used for recording
pointers to them.

#define CCB_CLIENT_SOCKETS_FN(fn) int (fn)(CCBClientLink *cl, \

void *data, int cntrl_sock, int telem_sock, unsigned io)

52

typedef CCB_CLIENT_SOCKETS_FN(CCBClientSocketsFn);

int ccb_client_sockets_callback(CCBClientLink *cl,

CCBClientSocketsFn *fn,

void *data);

The callback function is registered via the fn argument of ccb client sockets callback(), and
any application-specific resources to be passed to the callback are specified via the data
argument.

The cntrl sock and telem sock arguments of the callback function report the socket file de-
scriptors associated with the control and telemetry links, respectively. When one or both of
these links is not connected, the corresponding file descriptor is reported as -1. The set of I/O
events that the event handler should watch these sockets for, is specified in the io argument
of the callback function, expressed as a bitwise union of CCBClientIOStatus enumerators.

typedef enum {

CCB_CNTRL_READ = 1, /* Readability of the control socket */

CCB_CNTRL_WRITE = 2, /* Writability of the control socket */

CCB_TELEM_READ = 4, /* Readability of the telemetry socket */

CCB_TELEM_WRITE = 8 /* Writability of the telemetry socket */

} CCBClientIOStatus;

Subsequently, when the application’s event handler reports any of the specified events, the
manager should call the ccb client communicate() function with an io argument that is the
bitwise union of the CCBClientIOStatus enumerators that denote the events that were de-
tected.

4.9.4 Using threads to multiplex I/O

In a threaded program, provided that blocking I/O is selected, one thread should be devoted
to reading from the control socket, another to writing to the control socket, and a third to
reading from the telemetry socket. First a connection must be established by calling ccb-
client connect() with its nonblocking argument specified as 0. Then each of the three threads
must call ccb client communicate() with a different one of the following 3 CCBClientIOStatus
enumerators as the value of its io argument.

• CCB CNTRL READ

Read messages from the control link until either an error occurs, of the control link is
terminated.

53

• CCB CNTRL WRITE

Repeatedly wait for and write queued messages to the control link until either an error
occurs or the control link is terminated.

• CCB TELEM READ

Read messages from the control link until either an error occurs, of the telemetry link
is terminated.

Note that in each case, ccb client communicate() doesn’t return until either an error occurs,
or the control link is terminated.

4.10 Registering a command-error callback function

Whenever the CCB server receives a command message from the manager, over the control
link, it examines the contents of the message, then sends back an acknowledgment reply to
report whether any problems were encountered. When the ccb client communicate() function
receives one of these acknowledgments, if the message says that the command had a problem,
ccb client communicate() calls an error-reporting callback function provided by the manager.
To register this callback function, the manager calls ccb cmd error callback().

The CCB CMD ERROR FN macro should be used for the declarations and prototypes of suit-
able callback functions, and the CCBCmdErrorFn typedef can be used for recording pointers
to them.

#define CCB_CMD_ERROR_FN(fn) int (fn)(CCBClientLink *cl, \

void *data, long id, \

CCBCmdStatus status)

typedef CCB_CMD_ERROR_FN(CCBCmdErrorFn);

int ccb_cmd_error_callback(CCBClientLink *cl, CCBCmdErrorFn *fn,

void *data);

The callback function is registered via the fn argument of ccb cmd error callback(), and any
application-specific resources to be passed to the callback are specified via the data argument.
The id argument of the callback function is passed the value of the message identifier that was
specified when the problematic command was queued by the manager. The status argument
of the callback is used to report coarse information about the error.

typedef enum {

CCB_CMD_ACCEPTED, /* This enumerator isn’t forwarded to error */

54

/* callbacks */

CCB_CMD_GARBLED, /* The contents of the command message */

/* were invalid and couldn’t be fixed. */

CCB_CMD_IGNORED, /* The command didn’t make sense at this */

/* time, and was ignored. */

CCB_CMD_SYSERR /* An unexpected internal software or */

/* hardware error was encountered while */

/* attempting to execute the command. */

} CCBCmdStatus;

This enumeration is in the public header-file of the communication library, so to prevent ABI
problems if new error conditions are added, and somebody forgets to recompile either the
library, the CCB server, or the manager, new error enumerators should always be appended
to the end of the enumeration, rather than inserted, and old enumerators should not be
removed or re-ordered. With this caveat, if functions that use values from this enumeration
are prepared to handle values that they don’t know about, at worst an unknown error
condition will elicit a warning, rather than, say accessing a non-existent element in an array
of error conditions, or associating the incorrect error condition with an enumerator.

Note that the reported error conditions aren’t meant to be very precise. For more detailed
information, the maintainer should look at the corresponding log messages that the CCB
server sends to the manager via the telemetry connection. As such, it is hoped that few,
if any, new enumerators will need to be added. In practice, after debugging the manager
and the server, the only error that should be expected during normal operations should be
CCB CMD SYSERR, which will be sent if a hardware failure is detected. As such, adding
more finely targeted error conditions seems pointless, especially given that there isn’t much
that the manager can do in response, other than report which command evoked the error
messages that appear in the log, and perhaps attempt a CCB reset.

4.11 Outgoing CCB commands

The following two sections describe the control commands that are sent to the CCB server
over its control link. The functions that queue each of these commands, all take the same
two initial arguments, which are interpreted as follows.

1. A pointer to the CCBClientLink object that identifies the remote backend that the
command is to be sent to.

2. An arbitrary manager-chosen integer message-identifier to be passed to the applica-
tion’s error callback in the event that the CCB server encounters problems with this
command. This could, for example, be a manager-defined message-type enumerator,
or the value of a command sequence-counter.

55

4.11.1 Outgoing CCB control commands

This section describes the public functions that are used to queue CCB control commands,
for subsequent dispatch to the CCB server when ccb client communicate() is called.

Each of these functions returns an integer, which is 0 on success and non-zero otherwise.
On failure, which could, for example, be due to running out of memory to queue the new
message, or due to the manager passing invalid arguments, errno is set accordingly.

A summary of the available commands is given in the following table, along with the names
by which they are referred to elsewhere in the text.

Name Description
start-scan Start a new scan at the end of the current integration
stop-scan Start a new intra-scan ASAP
dump-scan Start a new dump-mode scan ASAP
load driver Load either the real or the simulation device-driver.
reset Re-initialize the hardware.
ping Request a link-verification reply.
status-request Request a CCB-status report.
shutdown Shutdown the real-time CPU.
reboot Reboot the real-time CPU.
monitor Configure monitoring.
telemetry Configure the telemetry streams.
logger Configure the message logger.

ccb queue start scan cmd() – Queuing a start-scan command

The start-scan command causes a new scan, with a specified configuration, to be started on
the 1-PPS boundary specified by the mjd and tod parameters. If the command is received
after the requested time, the new scan is started as soon as possible, just like a stop-scan
command. A log message is dispatched to alert the operator when this happens.

start-scan commands are sent by first calling ccb queue start scan cmd() to queue the com-
mand for dispatch, then subsequently calling ccb client communicate() to send it to the CCB
server.

int ccb_queue_start_scan_cmd(CCBClientLink *cl, long id,

const CCBConfig *cnf,

unsigned long scan,

unsigned long mjd,

unsigned long tod);

The arguments of this function are interpreted as follows.

56

• The configuration of the CCB during the new scan

This argument specifies the behavior of the CCB during the requested scan. It must
have been previously allocated by calling new CCBConfig(), with any changes from the
default configuration having been established by calling the ccb set * cnf() functions
described earlier in this document.

• A numeric ID to give the scan

This is a manager-chosen numeric identifier, which is thereafter transmitted along with
the data of each integration of the new scan.

• The date at which to start the scan (mjd)

This is the date at which the scan should be started, expressed in UTC, as a Modified
Julian Day number. To be precise, this is the integer part of (Julian Date−2400000.5).

• The time-of-day at which to start the scan (tod)

This is the time of day at which the scan should be started, specified as the integer
number of seconds after 0H UTC on the day indicated by mjd. The scan starts at
the start of the specified second, provided that the command is received at least one
second in advance of this time.

ccb queue stop scan cmd() – Queuing a stop-scan command

This operates like the start-scan command, except that on receipt by the server, a new scan is
started as quickly as possible, rather than waiting for a specified 1-second tick. The resulting
truncated integration from the previous scan is discarded.

Note that although this command starts a new scan, it is called stop-scan because it stops
an observing scan. The scan that it then starts, which can usefully be referred to as an
intra-scan, is basically a scan that is used only for monitoring purposes, and is not recorded
in the observer’s FITS file.

A stop-scan command is sent by first calling ccb queue stop scan cmd() to queue the com-
mand for dispatch, then subsequently calling ccb client communicate() to send it to the CCB
server.

int ccb_queue_stop_scan_cmd(CCBClientLink *cl, long id,

CCBConfig *cnf,

unsigned long scan);

The arguments of this function are interpreted as follows.

• The configuration of the CCB during the new intra-scan

57

This argument specifies the behavior of the CCB during the requested intra-scan that
follows the stop command. It must have been previously allocated by calling new-
CCBConfig(), with any changes from the default configuration having been established
by calling the ccb set * cnf() functions described earlier in this document.

• A numeric ID to give the scan

This is a manager-chosen numeric identifier, which is thereafter transmitted along with
the data of each integration of the new intra-scan.

ccb queue dump scan cmd() – Queuing a dump-scan command

This operates like the stop-scan command, except that instead of the integrated data of the
resulting intra-scan being sent back to the manager, the raw 100ns samples of a specified
ADC are written to a named-pipe on the real-time computer. Since the bandwidth of the
USB link between the master FPGA and the real-time computer isn’t high enough to sustain
continuous readback of ADC samples, only a specified number of samples are collected from
the start of each integration.

A dump-scan command is sent by first calling ccb queue dump scan cmd() to queue the com-
mand for dispatch, then subsequently calling ccb client communicate() to send it to the CCB
server.

int ccb_queue_dump_scan_cmd(CCBClientLink *cl, long id,

CCBConfig *cnf,

unsigned long scan,

unsigned short adc,

unsigned long samples,

unsigned long frames);

The arguments of this function are interpreted as follows.

• The configuration of the CCB during the dump-scan (cnf)

This argument specifies the behavior of the CCB during the requested intra-scan that
the dump command starts. It must have been previously allocated by calling new-
CCBConfig(), with any changes from the default configuration having been established
by calling the ccb set * cnf() functions described earlier in this document.

• A numeric ID to give the scan

This is a manager-chosen numeric identifier, which is thereafter transmitted along with
the dumped data and the monitor data of each integration of the intra-scan.

• The digitizer whose samples are to be collected (adc)

58

This specifies which ADC channel is to have its raw samples siphoned off to be sent
to the CCB computer. This must be a number between 0 and CCB NUM ADC−1,
where CCB NUM ADC, which is defined as follows, in ccbconstants.h, parameterizes
the number of digitizers in the CCB.

#define CCB_NUM_ADC 16

• The maximum number of samples to collect per integration (samples)

The number of 100ns ADC samples that can be collected and dispatched to the CCB
computer at the start of each integration, is limited by the size of the frame-buffer in the
CCB’s master FPGA. If fewer samples than the hard-limit are desired per integration,
then this argument can be used to specify a smaller number. Otherwise the argument
can be specified as CCB DUMP MAX SAMPLES, which is a macro, defined to be zero
in ccbconstants.h.

#define CCB_DUMP_ALL_SAMPLES 0

Note that if the samples argument specifies more samples than can actually be accu-
mulated, the result will be as though CCB DUMP ALL SAMPLES had been specified.

• The maximum number of integrations to dump (frames)

At the start of each new integration of a dump-scan, data are collected and sent to
the CCB computer. This argument specifies how many of these per-integration data-
frames are to be written to the named pipe on the CCB computer, for processing or
archiving by an external program. A value of zero, as parameterized by the macro
CCB DUMP ALL FRAMES, specifies that data-frames should be delivered indefinitely.

#define CCB_DUMP_ALL_FRAMES 0

ccb queue load driver cmd() – Queuing a load driver command

Load either the real CCB device driver, or the CCB simulation device driver.

typedef enum {

CCB_NORMAL_DRIVER, /* The real CCB device-driver */

CCB_VIRTUAL_DRIVER /* The CCB simulation device-driver */

} CCBDriverType;

int ccb_queue_load_driver_cmd(CCBClientLink *cl, long id,

CCBDriverType type);

59

ccb queue monitor cmd() – Queuing a monitor command

monitor commands specify how frequently messages containing monitoring should be sent to
the manager over the telemetry stream.

int ccb_queue_monitor_cmd(CCBClientLink *cl, long id,

unsigned short period);

The arguments of this function are interpreted as follows.

• The monitoring period (period)

This argument specifies the interval between monitoring updates, expressed as an in-
teger multiple of the integration period.

ccb queue telemetry cmd() – Queuing a telemetry command

telemetry commands specify which telemetry streams are to be sent to the manager. A
telemetry command is sent by first calling ccb queue telemetry cmd() to queue the command
for dispatch, then subsequently calling ccb client communicate() to send it to the CCB server.

int ccb_queue_telemetry_cmd(CCBClientLink *cl, long id,

unsigned short streams);

The arguments of this function are interpreted as follows.

• The telemetry data-stream selection (streams)

This parameter contains a bit-wise union of CCBTelemetryStream enumerators, speci-
fying which streams should be sent to the manager.

typedef enum {

CCB_INTEG_STREAM = 1, /* The stream of integrated data */

CCB_MONITOR_STREAM = 2, /* The stream of monitoring data */

CCB_LOG_STREAM = 4, /* The stream of log messages */

CCB_NO_STREAMS = 0, /* None of the above streams */

/* All of the above streams */

CCB_ALL_STREAMS = CCB_INTEG_STREAM | CCB_MONITOR_STREAM |

CCB_LOG_STREAM

} CCBTelemetryStream;

For example, if the manager is interested in receiving all types of telemetry, the argu-
ment of this command should be CCB ALL STREAMS.

60

ccb queue logger cmd() – Queuing a logger command

logger commands configure the log-message dispatcher in the CCB telemetry server.

int ccb_queue_logger_cmd(CCBClientLink *cl, long id,

unsigned long period);

The arguments of this function are interpreted as follows.

• The log-history purging interval (period)

As discussed later (see page 66), a record of historically sent log messages is used
to prevent repeated messages from being sent to the manager. The period argument
specifies how often this historical record should be purged, expressed as an integer
number of seconds, and thus the minimum time between repeated messages being
queued to be sent to the manager.

ccb queue reset cmd() – Queuing a reset command

When a manager first connects to the CCB, the server resets both itself, the CCB device-
driver and the CCB hardware to a default state; such that the manager always sees this
same state when it first connects. Thereafter the CCB can be returned to this state either
by disconnecting and reconnecting to the CCB server, or by sending a reset command.

On receiving a reset command, the CCB server first unloads, then reloads the CCB device
driver. This not only resets the device driver, but also resets the CCB hardware. The CCB
server then turns off all telemetry except log messages, and starts a dummy initial intra-scan
with a scan ID of 0.

A reset command is sent by first calling ccb queue reset cmd() to queue the command for
dispatch, then by subsequently calling ccb client communicate() to send it to the CCB server.

int ccb_queue_reset_cmd(CCBClientLink *cl, long id);

ccb queue ping cmd() – Queuing a ping command

On receiving this command the CCB server replies to the manager with a cntrl-ping-reply
message over the control connection, and a telem-ping-reply message over the telemetry con-
nection.

ping commands are sent by first calling ccb queue ping cmd() to queue the command for
dispatch, then by subsequently calling ccb client communicate() to send it to the CCB server.

61

int ccb_queue_ping_cmd(CCBClientLink *cl, long id);

The manager can subsequently check whether replies to this ping were received by calling
the ccb ping echos() command.

unsigned ccb_ping_echos(CCBClientLink *cl);

This function returns a bitwise union of CCBLinkType enumerators, denoting the set of links
over which replies to the most recent ping command, have been received.

typedef enum {

CCB_CNTRL_LINK = 1, /* The link to the CCB telemetry server */

CCB_TELEM_LINK = 2, /* The link to the CCB control server */

CCB_ALL_LINKS = CCB_CNTRL_LINK | CCB_TELEM_LINK;

} CCBLinkType;

Provided that the manager waits for a reasonable amount of time between sending a ping
command and checking for its echos, then the ccb ping echos() function should return CCB-
ALL LINKS. If not, then one or both of the server connections are down for some reason.

Ping commands are designed to be used as follows. Every few minutes the manager should
first call ccb ping echos() to see if replies were received from the last ping command, and then
call ccb queue ping cmd() to send a new ping command. If ccb ping echos() doesn’t return
CCB ALL LINKS, then the manager should advise the operator that something has gone
wrong. To facilitate this usage, if ccb ping echos() is called before the first ping command
has been sent over a newly established connection, CCB ALL LINKS is returned. Thus ccb-
ping echos() can always be called just before ccb queue ping cmd(), without reporting a
bogus link problem at startup.

ccb queue status request cmd() – Queuing a status-request command

On receiving this command, the CCB server queues a status-reply message to be sent back
to the manager over the control connection. This reply, which is documented later, reports
on the health of the CCB.

status-request commands are sent by first calling ccb queue status request cmd() to queue the
command for dispatch, then subsequently calling ccb client communicate() to send it to the
CCB server.

int ccb_queue_status_request_cmd(CCBClientLink *cl, long id);

62

ccb queue shutdown cmd() – Queuing a shutdown command

On receiving this command, the CCB server attempts to unload the CCB device driver,
which has the side effect of stopping all CCB interrupts, then initiates a computer-shutdown
process, with the intention of both shutting down the operating system and switching off
the real-time computer.

shutdown commands are sent by first calling ccb queue shutdown cmd() to queue the com-
mand for dispatch, then by subsequently calling ccb client communicate() to send it to the
CCB server.

int ccb_queue_shutdown_cmd(CCBClientLink *cl, long id);

ccb queue reboot cmd() – Queuing a reboot command

On receiving this command the CCB server attempts to unload the CCB device driver, which
has the side effect of stopping all CCB interrupts, then initiates a reboot of the real-time
computer.

reboot commands are sent by first calling ccb queue reboot cmd() to queue the command for
dispatch, then subsequently calling ccb client communicate() to send it to the CCB server.

int ccb_queue_reboot_cmd(CCBClientLink *cl, long id);

4.12 Incoming control-link replies

This section describes the library functions that are used by the manager to register callback
functions for ccb client communicate() to subsequently use to deliver control-link ping and
status-reply messages.

Each of the callback-registration functions returns an integer, which is 0 on success and
non-zero otherwise. On failure, errno is set according to the error. The manager’s callback
functions are also required to return an integer, which should be 0 on success and 1 on
failure. When a callback reports an error in this way, it should also set errno appropriately,
so that when ccb client communicate() responds to this by returning non-zero, the manager
can inspect errno to see what happened.

A summary of the possible control-link replies is given in the following table, along with the
names by which they are referred to elsewhere in the text.

63

Name Description
cntrl-ping-reply A reply to a ping command.
status-reply A reply to a status-request command.

Along with each callback function, the manager can specify an arbitrary void * pointer to
be passed to the callback function whenever it is called. This should be used by the manager
to pass the callback function any resources that it needs when handling the corresponding
reply message. In addition to this pointer, each callback function is passed a pointer to the
CCBClientLink object that received the message, plus any arguments corresponding to the
contents of the message.

ccb status reply callback() – Routing status-request replies

The public ccb status reply callback() function is used to register the callback function that
will subsequently be called by ccb client communicate() whenever it receives a status-reply
message.

The CCB STATUS REPLY FN macro should be used for the declarations and prototypes of
suitable callback functions, and the CCBStatusReplyFn typedef can be used for recording
pointers to them.

#define CCB_STATUS_REPLY_FN(fn) int (fn)(CCBClientLink *cl, \

void *data, \

unsigned long status)

typedef CCB_STATUS_REPLY_FN(CCBStatusReplyFn);

int ccb_status_reply_callback(CCBClientLink *cl,

CCBStatusReplyFn *fn, void *data);

The callback function is registered via the fn argument of ccb status reply callback(), and any
application-specific resources that should be passed to the callback are specified via the data
argument. The contents of the message are passed to the callback via the status argument,
which reports the overall health of the CCB software and hardware. This is represented by
a bit-wise union of CCBGeneralStatus enumerators, each of which represents the value of a
single bit within the status argument.

typedef enum {

CCB_LINK_DOWN = 1, /* The telemetry link is down */

CCB_BUFFER_FULL = 2, /* The telemetry output buffer filled */

/* up and hasn’t drained yet, so data */

/* are being discarded. */

64

CCB_HARD_FAULT = 4, /* A hardware fault has been detected */

CCB_SOFT_FAULT = 8 /* A software fault has been detected */

} CCBGeneralStatus;

Beware that unless care is taken to subsequently recompile every component of the system
(and update this documentation), none of the existing values in this enumeration should
either be removed or have their values changed. If necessary, new enumerators can be
appended with the next highest unused power-of-2 value, and to support this possibility all
software that uses these values should not assume anything about the values of currently
undefined bits.

4.13 Incoming telemetry messages

As described above for incoming control-link ping and status reply messages, incoming
telemetry messages from the CCB server are delivered to the manager via callback func-
tions. These are invoked by the ccb client communicate().

Each of the callback-registration functions returns an integer, which is 0 on success and
non-zero otherwise. On failure, errno is set according to the error. The manager’s callback
functions are also required to return an integer, which should be 0 on success and 1 on
failure. When a callback reports an error in this way, it should also set errno appropriately,
so that when ccb client communicate() responds to this by returning non-zero, the manager
can inspect errno to see what happened.

A summary of the possible telemetry messages is given in the following table, along with the
names by which they are referred to elsewhere in the text.

Name Description
monitor-data Instrumental monitoring data
integ-data Integrated radiometer data
log-message CCB log messages
telem-ping-reply Telemetry-link replies to ping commands

The following table indicates the buffering and prioritization of these messages. Messages
with higher priority values are sent before lower priority messages.

Message type Priority Queue length Queue overflow disposition
monitor-data 0 1 message Overwrite the previous unsent message
integ-data 1 3MB (>= 10s) Allow the queue to drain
log-message 2 100 messages Overwrite the oldest unsent message
telem-ping-reply 3 1 message Overwrite the previous unsent message

65

As can be seen, replies to ping commands are given the highest priority, since they are time
sensitive. There is no need to queue these messages, since they contain no information,
so the output queue only has a single entry, which is overwritten every time that a new
telem-ping-reply reply is requested.

log-message messages have the second highest priority, to prevent important messages from
being held up indefinitely. The queuing strategy for log messages is complicated by the
need to prevent rapidly repeating messages from consuming too much memory and band-
width. Detecting repeating messages is further complicated by the fact that a given message-
reporting statement can include changeable content in its messages, such as IP addresses,
errno information and problematic values. The logging strategy adopted by the CCB server
is thus as follows. In addition to a fixed size queue of outgoing log messages, the server main-
tains a periodically purged table containing the checksums of recently generated log messages.
The table of checksums records the checksums of up to CCB MAX LOG VARIANTS different
messages for each logging statement. Before appending a message to the queue of outgoing
log messages, the CCB server first checks to see if, since the last time that this checksum-
table was cleared, the originating statement has either already reported the same message,
or has generated an excessive number of varying messages. The message is not queued if
either of these conditions are true.

By default, the table of historical checksums is cleared by the library every CCB LOG PURGE-
DT seconds, such that a repeated message sent after this time interval again be reported.
Thus within each period of CCB LOG PURGE DT seconds, up to CCB MAX LOG VARIANTS
unique messages per logging statement are reported to the manager.

The interval at which the table of checksums is cleared can be changed from its default by
sending a logger control command.

integ-data messages have the next highest priority. They are stored in a large, fixed sized
ring buffer, with sufficient room to bridge reasonable periods of network congestion. If the
observer selects such a short integration period that the buffer becomes full; rather than new
messages overwriting old messages in the ring buffer, new messages are thrown away until
the buffer has completely drained. This potentially supports short periods of contiguous
data-taking at high data rates, interleaved with gaps when no data are recorded.

Finally, monitor-data messages have the lowest priority, since they are only intended as a
visual indication of the instantaneous health of the system. Old monitor values aren’t very
useful, so the output buffer of unsent monitoring messages is only one message long, and if a
new monitor message is generated before the old one has been queued for transmission, the
old one is simply discarded and replaced with the new one.

The following sections describe the library functions used by the manager to register callback
functions for ccb client communicate() to subsequently use to deliver telemetry messages.

All telemetry message callback functions have 3 arguments in common, these being the
CCBClientLink object that received the message, arbitrary application-supplied callback data,

66

and a pointer to a CCBTimeStamp structure, which reports the date and time at which the
message was originally generated.

ccb monitor msg callback() – Routing telemetry monitor-data messages

Instrumental monitoring data are sent to the manager over the telemetry link, at the end of
every monitor interval’th integration, in a monitor-data message.

The public ccb monitor msg callback() function is used to register the callback function that
will subsequently be called by ccb client communicate() whenever it receives a monitor-data
message.

The CCB MONITOR MSG FN macro should be used for the declarations and prototypes of
suitable callback functions, and the CCBMonitorMsgFn typedef can be used for recording
pointers to them.

#define CCB_MONITOR_MSG_FN(fn) int (fn)(CCBClientLink *cl, \

void *data, \

const CCBTimeStamp *ts, \

unsigned long scan, \

unsigned long number, \

const unsigned long *values,\

unsigned nvalues)

typedef CCB_MONITOR_MSG_FN(CCBMonitorMsgFn);

int ccb_monitor_msg_callback(CCBClientLink *cl, CCBMonitorMsgFn *fn,

void *data);

The callback function is registered via the fn argument of ccb monitor msg callback(), and
any application-specific resources that should be passed to the callback are specified via the
data argument. The scan argument identifies the parent scan, and has the value that the
manager specified in the stop-scan or start-scan command that initiated the originating scan
or intra-scan. The number argument is the sequential number of the monitoring message
within the current scan, starting from 0. The manager can use this to check for discarded
monitor messages. The first nvalues elements of the array pointed to by the values[] argument,
contain the monitoring data points.

ccb integ msg callback() – Routing telemetry integ-data messages

Integrated data are sent to the manager in integ-datamessages, at the end of each integration.

67

The public ccb integ msg callback() function is used to register the callback function that
will subsequently be called by ccb client communicate() whenever it receives an integ-data
message. The

The CCB INTEG MSG FN macro should be used for the declarations and prototypes of suit-
able callback functions, and the CCBIntegMsgFn typedef can be used for recording pointers
to them.

#define CCB_INTEG_MSG_FN(fn) int (fn)(CCBClientLink *cl, \

void *data, \

const CCBTimeStamp *ts, \

unsigned long scan, \

unsigned long number, \

unsigned short flags, \

const unsigned long *values,\

unsigned nvalues)

typedef CCB_INTEG_MSG_FN(CCBIntegMsgFn);

int ccb_integ_msg_callback(CCBClientLink *cl, CCBIntegMsgFn *fn,

void *data);

The callback function is registered via the fn argument of ccb integ msg callback(), and any
application-specific resources that should be passed to the callback are specified via the data
argument. The arguments of this function contain the following information.

• The scan identification number (scan)

The scan argument identifies the parent scan, and has the value that the manager
specified in the stop-scan or start-scan command that initiated the originating scan or
intra-scan.

• The integration identification number (number)

The number argument is the sequential number of the integration within that scan,
starting from 0. The manager can use the integration number to check for missing
integ-data messages.

• Single-bit status flags (flags)

Individual bits within the flags argument describe pertinent information about the
hardware-status during the integration. This is a bit-wise union of power-of-2 values
from the CCBIntegFlags enumeration, which is defined (in ccbcommon.h) as follows.

typedef enum {

CCB_CAL_A_ON = 1, /* Included if cal-diode A was on */

68

CCB_CAL_B_ON = 2, /* Included if cal-diode B was on */

CCB_INTEG_OK = 4, /* Included if the integration is usable */

CCB_SLAVE0_OK = 8, /* Included if slave-FPGA 0 was present */

CCB_SLAVE1_OK = 16, /* Included if slave-FPGA 1 was present */

CCB_SLAVE2_OK = 32, /* Included if slave-FPGA 2 was present */

CCB_SLAVE3_OK = 64 /* Included if slave-FPGA 3 was present */

} CCBIntegFlags;

Note that during integrations where the calibration diodes are in the process of switch-
ing to a new state, the cal-diode status bits denote the target states of the calibration
diodes, but the CCB INTEG OK bit is omitted, to indicate that they aren’t stable
enough for the integration to be used. The slave-present status bits reflect correspond-
ing single-bit signals that the master FPGA receives from the individual slave-FPGA
boards. If a slave board is unplugged, fails to load its firmware, or has a fault that
prevents it from driving this signal, then the corresponding slave-present status-bit is
not included in the flags argument.

• The integrated data-values (values)

The first nvalues elements of the array pointed to by the values[] argument, contain the
radiometer integrations.

• The number of integrated data-values (nvalues)

This argument specifies the number of significant elements at the start of the values
array.

ccb log msg callback() – Routing telemetry log-message messages

When the server sends error and informational messages to the manager, to be logged, they
are sent as log-message messages over the telemetry link.

The public ccb log msg callback() function is used to register the callback function that will
subsequently be called by ccb client communicate() whenever it receives a log-message mes-
sage. Since the same callback function is invoked whenever the client end of the communica-
tions library needs to report an internal error, it is recommended that ccb log msg callback()
be the first CCB library function called after new CCBClientLink() returns. Otherwise some
error messages may end up being reported to the manager program’s stderr, which may not
be visible to the observer.

The CCB LOG MSG FN macro should be used for the declarations and prototypes of suitable
callback functions, and the CCBLogMsgFn typedef can be used for recording pointers to them.

#define CCB_LOG_MSG_FN(fn) int (fn)(CCBClientLink *cl, \

void *data, \

69

const CCBTimeStamp *ts, \

const char *msg, \

unsigned long id, \

CCBLogLevel level)

typedef CCB_LOG_MSG_FN(CCBLogMsgFn);

int ccb_log_msg_callback(CCBClientLink *cl, CCBLogMsgFn *fn, void *data);

The callback function is registered via the fn argument of ccb log msg callback(), and any
application-specific resources that should be passed to the callback are specified via the data
argument. The log message itself is passed as a normal ’\0’ terminated C string, via the
msg argument, and the corresponding unique numeric identifier of the message is passed in
the id argument. The level argument reports the significance of the message, as enumerated
by the CCBLogLevel type.

typedef enum {

CCB_INFO, /* A purely informational message */

CCB_NOTICE, /* A note about a probably inconsequential event */

CCB_WARNING, /* A warning about a potentially problematic event */

CCB_ERROR, /* A report of an event requiring operator attention */

CCB_FAULT, /* A report of a condition that is corrupting data */

CCB_FATAL /* A report of a system-wide failure */

} CCBLogLevel;

Note that these enumerators simply provide symbolic names for the level values defined by
YGOR.

4.14 A TCL wrapper around the CCB client API

Ostensibly for the purpose of facilitating a GUI demonstration CCB client using Tcl/Tk, but
also useful for quick test programs, a dynamically loadable Tcl wrapper interface is provided
for the CCB client communications library. This can either be linked with directly by any
program that embeds Tcl, or can be loaded into a running copy of the standard wish or tclsh
shell programs that come with the Tcl/Tk distribution. To load the library into an already
executing copy of wish, one types:

load ./libccbtclclient.so

Note that if the above library isn’t in the current directory, the ./ component in the above
should be replaced by the path of the directory where it is located. Alternatively, if the

70

library is installed in one of the directories that are searched automatically by the run-time
linker, then there is no need to specify a directory at all. The Tcl wrapper defines a single
Tcl command called ccb. The first argument of this command is a sub-command, and must
be one of the following.

• ccb connect host

This command initiates a non-blocking connection to the specified host. The host
argument can either be a numeric IP address or a textual IP address. Before returning,
this command registers the sockets that it opens with the Tcl event loop.

• ccb disconnect

This terminates any existing connection to a CCB server, and withdraws the defunct
sockets from the Tcl event loop.

• ccb send ...

This command is the command responsible for queuing all commands destined for the
remote CCB server. Its first argument identifies the type of control-command to be
sent, and is followed by any arguments that the command requires. The following
commands are defined.

– ccb send start scan mjd seconds

This starts a new scan on the day specified by the Modified Julian Day number
mjd, at the time of day specified by the seconds argument.

– ccb send stop scan

This starts an intra-scan ASAP.

– ccb send dump scan adc samples frames

Start a dump-mode intra-scan ASAP. The adc argument should be a number
between 0 and 15, specifying the ADC whose samples are to be collected. The
samples argument should be a positive integer specifying the maximum number
of samples that should be collected per integration, or the word max to specify
that the maximum number possible be collected. The frames argument should
be a positive integer specifying how many per-integration data-frames should be
delivered to the named pipe on the real-time computer, or the word all to specify
that frames should be delivered indefinitely.

– ccb send load driver type

Load either the real CCB device driver, or a driver that emulates the real device
device driver and its hardware. The type argument can take any of the following
values.

71

normal virtual

These names have the same meanings as the similarly named members of the
CCBDriverType datatype.

– ccb send reset

This resets the CCB.

– ccb send ping

If any previously sent ping has not been responded to, this function throws an
error (use the Tcl catch command to see this). Otherwise it sends a ping command
to the CCB server.

– ccb send status request

This asks the CCB server to send us a message reporting the status of the CCB
backend. How the subsequent response is caught and responded to is documented
below.

– ccb send shutdown

This tells the remote CCB server to place the CCB electronics in a safe state,
then shutdown the backend computer.

– ccb send reboot

This tells the remote CCB server to place the CCB electronics in a safe state,
then reboot the backend computer.

– ccb send monitor period

This command configures the frequency of monitoring updates. The period argu-
ment must be an integer specifying the monitoring period as a number of inte-
gration periods.

– ccb send telemetry streams

This command tells the CCB server which telemetry streams it should send to us.
Specifically, the streams argument specifies the set of telemetry streams that the
CCB server should continue to send, expressed as a space separated list of zero
or more of the following names.

integ_stream monitor_stream log_stream

no_streams all_streams

These correspond to the similarly named CCBTelemetryStream enumerators (see
page 60).

– ccb send logger period

This command tells the CCB server how often to discard the history of sent log
messages, thus specifying the maximum rate at which repeated log messages will
be sent to us.

72

• ccb configure ...

This command configures specified parameters of the next scan or intra-scan. Its first
argument identifies the group of configuration parameters to be modified, and this
is followed by the corresponding configuration values. The following configuration
commands are defined.

– ccb configure phase switches active switches closed switches
samp per state

This configures the phase-switches in the receiver front-end. The arguments have
the same meanings as the synonymous arguments of the ccb set phase switch cnf()
function. The first 2 arguments, which both refer to sets of phase-switches, are
expressed as space-separated lists of zero or more of the following names.

switch_a switch_b no_switches all_switches

These have the same meanings as the similarly named CCBPhaseSwitches enu-
merators.

The final, samp per state argument is expressed as an integer.

– ccb configure cal diode ncal diode states diode times

This configures the calibration-diodes in the receiver front-end. The arguments
have the same meanings as the synonymous arguments of the ccb set cal diode-
cnf() function.

The diode states argument is represented as a Tcl list of calibration-diode sets,
each of which is expressed as a Tcl list of zero or more of the following names.

diode_a diode_b no_diodes all_diodes

These have the same meanings as the similarly named CCBCalDiodes enumerators.

The diode times argument is represented as a Tcl list of integers.

Note that the number of elements in the diode states and diode times arguments
must both be at least equal to the value of the integer ncal argument.

– ccb configure timing phase switch dt diode rise dt diode fall dt
integ period roundtrip dt holdoff dt

This configures the parameters which affect the timing of integrations. The ar-
guments are all integers and have the same interpretations as the synonymous
arguments of the ccb set timing cnf() function.

– ccb configure sampler sample type

This configures the parameters which affect the digitized samples that are input
to the integrators and collected verbatim during dump-mode. The sample type
argument determines where the hardware gets the samples that it collects and
integrates. It should be one of the following names.

73

adc_samples fake_samples

which have the same meanings as their similarly named CCBSampleType enumer-
ator counterparts.

• ccb attach ...

This command specifies a Tcl command that should be invoked when a given event
occurs, such as the reception of a particular type of message from the CCB server.
When the event next occurs, the specified Tcl command is invoked verbatim, without
any arguments being appended. Where information is associated with the event, the
specified Tcl command can use the ccb get ... commands, documented shortly, to get
that information.

The type of event to attach the Tcl command to is specified via the fist argument of
the ccb attach command, and the Tcl command that is to subsequently be invoked by
the event, is specified as the second argument. The possible events are as follows.

– ccb attach status command

Whenever a reply to a ccb send status request command is received the specified
Tcl command is executed. This Tcl command can use the ccb get status command
to retrieve the corresponding status information.

– ccb attach monitor command

Whenever a new packet of monitoring data is received, the specified Tcl command
is invoked. This Tcl command can use the ccb get monitor command to retrieve
the received monitoring data.

– ccb attach integ command

Whenever data are received from a newly completed integration, the specified Tcl
command is invoked. This Tcl command can use the ccb get integ command to
retrieve the integrated data.

– ccb attach log command

Whenever a log message is received from the CCB server or the CCB client library,
the specified Tcl command is invoked. This Tcl command can use the ccb get log
command to retrieve the log message.

– ccb attach error command

If a command that was sent to the CCB fails for any reason, the the specified Tcl
command is invoked. This Tcl command can use the ccb get error command to
retrieve the problematic completion status of the original command.

• ccb get ...

74

This command provides a means of querying information from the Tcl wrapper. No-
tably it allows one to get the contents of the last of each of a number of types of
message received from the CCB server.

The single argument of the ccb get command specifies what type of information is to
be retrieved. The retrieved data is passed back as the result string of the command.
For those not familiar with Tcl, the result string is written to stdout if the command
is typed in at the command-line of wish or tclsh, or it can be interpolated into an
argument of another Tcl command by invoking it between square brackets.

The available information requests are as follows.

– ccb get status

This retrieves the most recent CCB status that has been received in response to a
preceding ccb send status request command. The result string is a space separated
list of zero or more of the following status indicators.

link_down buffer_full hard_fault soft_fault

These correspond to the similarly named CCBGeneralStatus enumerators (see
page 64).

– ccb get monitor

This returns the most recently received batch of periodically sampled monitoring
data. The result string contains a space-separated list of the following integers:

1. mjd - The date at which the message was generated, expressed as a Modified
Julian day number

2. sec - The time at which the message was generated, expressed as the number
of complete seconds that had elapsed since the start of the above day.

3. ns - The fractional-seconds part of the time, expressed as an integer number
of nanoseconds.

4. scan - The scan-identification number that was sent with the start-scan or
stop-scan command that initiated the originating scan.

5. number - The sequential number of the integration within the originating
scan.

6. nvalue - The number of integrated values.

7. values... - The nvalue integrated values.

– ccb get integ

This returns the integrated data from the most recently completed integration
period. The result string contains a space-separated list of the following integers:

1. mjd - The date at which the message was generated, expressed as a Modified
Julian day number

2. sec - The time at which the message was generated, expressed as the number
of complete seconds that had elapsed since the start of the above day.

75

3. ns - The fractional-seconds part of the time, expressed as an integer number
of nanoseconds.

4. scan - The scan-identification number that was sent with the start-scan or
stop-scan command that initiated the originating scan.

5. number - The sequential number of the integration within the originating
scan.

6. flags - This is a Tcl list of zero or more of the following integration status-flags:

cal_a_on, cal_b_on, integ_ok, slave0_ok,

slave1_ok, slave2_ok, slave3_ok

These flag-names have the same meanings as their similarly named CCBIn-
tegFlags enumerator counterparts.

7. nvalue - The number of integrated values.

8. values... - The nvalue integrated values.

– ccb get log

This returns the most recently received log message. The result string is a space
separated list of the following items.

1. mjd - The date at which the message was generated, expressed as a Modified
Julian day number

2. sec - The time at which the message was generated, expressed as the number
of complete seconds that had elapsed since the start of the above day.

3. ns - The fractional-seconds part of the time, expressed as an integer number
of nanoseconds.

4. id - The identifier of the error-reporting statement that generated the message.

5. level - One of the following words, indicating the significance of the message.

info notice warning error fault fatal

These correspond to the similarly named CCBLogLevel enumerators (see page 70).

6. text - The log-message itself, rendered as a properly formed Tcl list element.

– ccb get error

This retrieves the error completion status of the last control command that suf-
fered an error. The result string contains one of the following values.

accepted garbled ignored syserr

These correspond to the similarly named CCBCmdStatus enumerators (see page 54).
Note that since the CCB library only tells us the completion statuses of commands
that fail, when this command returns the word accepted, this means that no com-
mand has failed yet.

76

– ccb get time

Return the current date and time as two integers, the first being the date as a
Modified Julian Day number, and the second being the time of day, expressed as
the number of seconds elapsed since the start of the day.

The following is a short example Tcl script, giving an overview of how to use the interface.
To try this script, cut and paste it into a file called tcl demo, then type:

tclsh tcl_demo

Load the CCB Tcl interface.

load libccbtclclient.so

Arrange for messages that are received from the CCB server to to be

displayed to stdout. Note that the Tcl puts command is like C’s

puts() function, and that in Tcl, sub-strings consisting of square

brackets surrounding Tcl commands are replaced by the output that

is generated by executing those commands.

ccb attach integ show_integ {puts "Integration: [ccb get integ]"}

ccb attach monitor show_monitor {puts "Monitor: [ccb get monitor]"}

ccb attach log show_log {puts "Log: [ccb get log]"}

ccb attach error show_error {puts "Error: [ccb get error]"}

ccb attach status show_status {puts "Status: [ccb get status]"}

Change the default timing, to slow down integration periods from

the default of 1ms to 1s (ie. 40000 * samp_per_state=250 * 100ns = 1s).

ccb configure timing 10 1000 1000 40000 10 7

Queue a stop-scan command to be sent, along with the above changed

configuration, once a connection is established to the CCB server.

ccb send stop_scan

Connect to the CCB server on the local machine.

ccb connect localhost

The CCB starts out with all telemetry disabled, so send the

to enable all telemetry.

77

ccb send telemetry all_streams

Load the hardware-simulating device driver.

ccb send load_driver virtual

Start the Tcl event loop.

set ::guard 0

vwait ::guard

Before running this, make sure that libccbtclclient.so is in the normal run-time shared-library
path, or add that directory to your LD LIBRARY PATH variable. Also, of course, first run
the ccbserver program, so that the script has something to talk to, after making sure that
the IP address of the host that you run the script on is in the ccb authorized ips file, and
that the CCB CONF DIR environment variable specifies the directory where said file resides.

78

Chapter 5

The CCB server communications API

The CCB server-communications library performs most of the work needed to implement the
CCB server. It basically acts as a gateway between the manager and both the CCB device
driver and the operating system. Writing a complete server involves providing callback
functions that load and unload the device driver, send commands to the device driver, and
reboot and shutdown the real-time CPU, along with a select() based event loop, controlled
by the library.

5.1 Include files

The datatype-declarations, function-prototypes and constants of the public API of the CCB-
server communications-library are contained in the following include files.

• ccbserverlink.h

This header-file contains all of the public function-prototypes and datatype declarations
that are specific to to the server side of the communications link.

• ccbcommon.h

This header-file contains the public function-prototypes and datatype declarations that
are shared between both the client and the server communications libraries. Since this
function is included by ccbserverlink.h, it isn’t usually necessary for the application to
explicitly include it.

• ccbconstants.h

This header-file contains all of the constants that affect the operation of the communi-
cations link. Since this function is included by ccbcommon.h, it isn’t usually necessary
for the application to explicitly include it.

79

5.2 The CCB-server communications library

The library that implements the CCB-server communications API, is a shared library called
libccbserverlink.so. Under Solaris and Linux, this filename is actually a symbolic link to the
most recent version of the library.

Among other advantages, the use of a shared library rather than a static library has the
benefit, at least under Solaris and Linux, of allowing one to restrict which symbols are
exported into the namespace of the application. This not only prevents programs from using
unstable private interfaces, but also greatly reduces namespace pollution and the possibility
of symbol-name clashes.

Linking a C program with this library under either Linux or Solaris can be done as follows.

gcc -o foo *.o -lccbserverlink

Note that linkage instructions built into the shared library cause other unspecified libraries,
such as -lsocket under Solaris, to be linked automatically.

5.3 Creating the resources used to communicate with

CCB managers

The CCB server creates the resources that are needed for communications with the manager
by calling new CCBServerLink().

CCBServerLink *new_CCBServerLink(CCBServerDriver *normal,

CCBServerDriver *virtual);

In addition to allocating resources, this binds the server to the CCB control and teleme-
try TCP/IP ports, whose numbers are parameterized, as mentioned earlier, by the CCB-
CONTROL PORT and CCB TELEMETRY PORT macros in ccbconstants.h. It doesn’t wait
for a manager to connect, but it does make the control and telemetry ports receptive to
incoming connections, specifying a queue length of 1. Both ports are configured to be non-
blocking, such that if a connection request is dropped between select() reporting activity, and
accept() being called, the process doesn’t block forever in accept(). The returned CCBServer-
Link object pointer is opaque, meaning that the definition of the structure that it points to
is not exported to applications in the public header-file.

The arguments of this function are interpreted as follows.

• The normal CCB device driver (normal)

80

The interface object of the real CCB device driver is passed in this argument. It must
have been allocated by calling new CCBServerDriver(). To facilitate development, this
argument can be NULL, provided that the virtual argument isn’t also NULL.

• The simulated CCB device driver (virtual)

The interface object of a CCB device-driver emulator is passed in this argument. It
must have been allocated by calling new CCBServerDriver(). The emulator should sim-
ulate both the CCB device driver, and the CCB hardware. It is used for off-line testing
of both the server and client software.

5.3.1 The CCB server’s device-driver interface

The CCB server talks to a given CCB device driver via a set of method functions encapsulated
in a corresponding CCBServerDriver object. Objects of this type are allocated by calling new-
CCBServerDriver().

CCBServerDriver *new_CCBServerDriver(void *data,

CCBDriverLoadFn *load_driver,

CCBDriverUnloadFn *unload_driver,

CCBDriverTellFn *tell_driver,

CCBDriverSelectEventsFn *select_events,

CCBDriverCheckEventsFn *check_events,

CCBRebootRTCFn *reboot_rtc,

CCBShutdownRTCFn *shutdown_rtc);

The arguments of new CCBServerDriver() are interpreted as follows.

• Application specific callback data (data)

This argument is a pointer to any resources that the calling application needs to have
passed to its callback functions.

• The callback which loads the device driver (load driver)

This argument specifies the function that the CCBServerLink object should call when
it needs to load the CCB device driver. It is guaranteed that before the first call to
this function, and thereafter between calls to this function, the driver will have been
unloaded by calling the unload driver callback function.

Suitable functions to pass in the load driver argument should be declared and proto-
typed using the CCB DRIVER LOAD FN() macro. Pointers to them can be recorded in
variables of type CCBDriverLoadFn.

#define CCB_DRIVER_LOAD_FN(fn) int (fn)(CCBServerLink *sl, \

81

void *data)

typedef CCB_DRIVER_LOAD_FN(CCBDriverLoadFn);

When this function is called, it is passed the value of the data argument of new-
CCBServerLink(). If successful, load driver callbacks should return 0. Otherwise they
should return 1, and set errno accordingly.

• The callback which unloads the device driver (unload driver)

This argument specifies the function that the CCBServerLink object should call when
it needs to unload the CCB device driver. Beware that this function may be called
when no driver is currently loaded, and that this shouldn’t be interpreted as an error.

Suitable functions to pass in the unload driver argument should be declared and proto-
typed using the CCB DRIVER UNLOAD FN() macro. Pointers to them can be recorded
in variables of type CCBDriverUnloadFn.

#define CCB_DRIVER_UNLOAD_FN(fn) int (fn)(CCBServerLink *sl, \

void *data)

typedef CCB_DRIVER_UNLOAD_FN(CCBDriverUnloadFn);

When this function is called, it is passed the value of the data argument of new-
CCBServerLink(). If successful, unload driver callbacks should return 0. Otherwise
they should return 1, and set errno accordingly.

• The callback that controls the device driver (tell driver)

This argument specifies the function that the CCBServerLink object should call when
it needs to send a command to the CCB device driver. This function isn’t called when
the device driver isn’t loaded.

Suitable functions to pass in the tell driver argument should be declared and proto-
typed using the CCB DRIVER TELL FN() macro. Pointers to them can be recorded in
variables of type CCBDriverTellFn.

#define CCB_DRIVER_TELL_FN(fn) int (fn)(CCBServerLink *sl, \

void *data, const CCBDriverCmd *cmd)

typedef CCB_DRIVER_TELL_FN(CCBDriverTellFn);

When this function is called, it is passed the value of the data argument of new-
CCBServerLink(), plus a command argument, as described below. If successful, tell-
driver callbacks should return 0. Otherwise they should return 1, and set errno accord-
ingly.

82

The CCBDriverCmdID enumeration lists the types of commands that can be sent to the
CCB device driver.

typedef enum {

CCB_DRV_ABORT_SCAN, /* Abort the current scan, and */

/* don’t start a new one. */

CCB_DRV_CONF_SCAN, /* Install a new scan */

/* configuration. */

CCB_DRV_STAGE_SCAN, /* Start a new scan at a */

/* specified time */

CCB_DRV_INTRA_SCAN, /* Start an intra-scan ASAP */

CCB_DRV_DUMP_SCAN /* Start a dump-mode intra-scan ASAP */

} CCBDriverCmdID;

The CCBDriverCmd datatype contains a union of all driver commands, prefixed with a
CCBDriverCmdID member identifying which member of the union is to be used.

struct CCBDriverCmd {

CCBDriverCmdID type; /* The type of command */

union {

CCBDrvConfScan conf; /* type==CCB_DRV_CONF_SCAN */

CCBDrvStageScan stage; /* type==CCB_DRV_STAGE_SCAN */

CCBDrvIntraScan intra; /* type==CCB_DRV_INTRA_SCAN */

CCBDrvDumpScan dump; /* type==CCB_DRV_DUMP_SCAN */

} pars;

};

The individual commands communicated by this structure are defined as follows.

– Abort the current scan

This command immediately aborts any ongoing scan or intra-scan, and makes the
hardware receptive to scan configuration changes. No new scan is started. This
command takes no arguments, so there is no corresponding member within the
pars union.

– Configure the next scan

Between sending an abort-scan command and either a stage-scan or an intra-scan
command to the driver, CCBServerLink objects invoke this driver command to
configure the hardware for the next scan or intra-scan. The parameters of the
scan are encapsulated in the conf member of the pars union in a structure of the
following type.

83

typedef struct {

CCBPhaseSwitchCnf phase; /* The phase-switch */

/* configuration. */

CCBCalDiodeCnf cal; /* The calibration diode */

/* configuration. */

CCBTimingCnf timing; /* The hardware timing */

/* configuration. */

CCBSamplerCnf sampler; /* The sampler */

/* configuration */

} CCBDrvConfScan;

The members of this structure are encapsulated configuration groupings of the
types that are returned by the ccb get * cnf() configuration lookup functions.

– Stage a new observing scan

When the server library receives a start-scan command, it uses the abort-scan
driver-command to terminate any existing scan or intra-scan, the configure-scan
driver-command to install the configuration parameters of the requested scan,
then finally invokes the stage-scan driver-command to initiate the scan at a spec-
ified time. The parameters of this command are encapsulated within a structure
of the following type.

typedef struct {

unsigned long scan; /* The numeric scan identifier */

unsigned long mjd; /* The date on which to start, */

/* expressed as a Modified */

/* Julian day number. */

unsigned long secs; /* The time of day at which to */

/* start the scan, expressed */

/* in seconds since 0H UTC on */

/* the day specified in ’mjd’. */

} CCBDrvStageScan;

The scan member forwards the numeric scan identifier that the manager sent
in the start-scan command, so that the driver can use it to tag integration and
monitoring data from the new scan. After receiving this command, the device
driver waits until the rising edge of the 1-PPS signal that matches the specified
start time and date, before starting the new scan.

– Start an intra-scan

When the server library receives a stop-scan command from the manager, it uses
the abort-scan driver-command to terminate any existing scan or intra-scan, the
configure-scan driver-command to install the configuration parameters of the re-
quested scan, then finally invokes the intra-scan driver-command to immediately

84

initiate an intra-scan. The parameters of this command are encapsulated within
a structure of the following type.

typedef struct {

unsigned long scan; /* The numeric scan identifier */

} CCBDrvIntraScan;

The scan member forwards the numeric scan identifier that the manager sent
in the stop-scan command, so that the driver can use it to tag integration and
monitoring data from the new intra-scan.

– Start a dump-mode intra-scan

When the server library receives a dump-scan command from the manager, it uses
the abort-scan driver-command to terminate any existing scan or intra-scan, the
configure-scan driver-command to install the configuration parameters of the re-
quested scan, then finally invokes the dump-scan driver-command to immediately
initiate a dump-mode intra-scan. The parameters of this command are encapsu-
lated within a structure of the following type.

typedef struct {

unsigned long scan; /* The numeric scan identifier */

unsigned short adc; /* The ADC to dump */

unsigned long samples; /* The max number of samples to */

/* collect per integration. */

unsigned long frames; /* The number of per-integration */

/* data-frames to deliver. */

} CCBDrvDumpScan;

The adc member should be an integer between 0 and CCB NUM ADC−1, speci-
fying the ADC whose samples are to be collected. The samples member, should
either be CCB DUMP MAX SAMPLES, to specify that the maximum number of
samples/integration be collected, or a positive integer specifying the desired num-
ber. The frames member should either be CCB DUMP ALL FRAMES, to specify
that per-integration data-frames be delivered continuously, or a positive integer
specifying how many frames to deliver per dump-mode scan.

• The callback that indicates events to watch (select events)

This argument specifies a function which is called each time just before the CCB
server’s event loop invokes select() to wait for I/O. The driver is expected to add any
file-descriptors that it wants to have watched for activity, and/or register an inactivity-
timeout.

Suitable functions to pass in the select events argument should be declared and proto-
typed using the CCB DRIVER SELECT EVENTS FN() macro. Pointers to them can be
recorded in variables of type CCBDriverSelectEventsFn.

85

#define CCB_DRIVER_SELECT_EVENTS_FN(fn) int (fn)(\

CCBServerLink *sl, void *data, \

fd_set *rfds, fd_set *wfds, int *maxfd, \

struct timeval *timeout)

typedef CCB_DRIVER_SELECT_EVENTS_FN(CCBDriverSelectEventsFn);

When this function is called, it is passed the value of the data argument of new-
CCBServerLink(). The callback should use the standard FD SET() macro to install
file-descriptors of interest in *rfds and *wfds, where the former is for descriptors to be
watched for readability, and the latter is for those to be watched for writability. If the
value of *maxfd is less than the maximum value of any descriptor that the callback has
added to rfds or wfds, then it should be set to the latter maximum. If the driver wants
to be called on inactivity-timeouts, then it should register the timeout that it wants in
the timeout argument.

Normally the callback should return 0 to indicate success. If an unrecoverable error
occurs, it should return 1, and set errno accordingly.

• The callback that checks for driver events (check events)

This argument specifies a function which is called each time when the CCB server’s
call to select() returns. The driver is expected to handle any indicated file-descriptor
activity, or inactivity-timeout.

Suitable functions to pass in the check events argument should be declared and proto-
typed using the CCB DRIVER CHECK EVENTS FN() macro. Pointers to them can be
recorded in variables of type CCBDriverCheckEventsFn.

#define CCB_DRIVER_CHECK_EVENTS_FN(fn) int (fn)(\

CCBServerLink *sl, void *data, \

fd_set *rfds, fd_set *wfds)

typedef CCB_DRIVER_CHECK_EVENTS_FN(CCBDriverCheckEventsFn);

When this function is called, it is passed the value of the data argument of new-
CCBServerLink(). If the select() inactivity timeout was triggered, the rfds and wfds
arguments are both NULL. Otherwise they contain the sets of file-descriptors that are
now ready for reading and writing, respectively.

Normally the callback should return 0 to indicate success. If an unrecoverable error
occurs, it should return 1, and set errno accordingly.

• The callback that reboots the computer (reboot rtc)

This argument specifies the function that the CCBServerLink object should call to
reboot the CCB computer.

86

Suitable functions to pass in the reboot rtc argument should be declared and proto-
typed using the CCB REBOOT RTC FN() macro. Pointers to them can be recorded in
variables of type CCBRebootRTCFn.

#define CCB_REBOOT_RTC_FN(fn) int (fn)(CCBServerLink *sl, \

void *data)

typedef CCB_REBOOT_RTC_FN(CCBRebootRTCFn);

When this function is called, it is passed the value of the data argument of new-
CCBServerLink(). When a reboot is successfully initiated, reboot rtc callbacks should
return 0. Otherwise they should return 1, and set errno accordingly.

• The callback that shuts-down the computer (shutdown rtc)

This argument specifies the function that the CCBServerLink object should call to
shutdown both the CCB computer and the CCB hardware.

Suitable functions to pass in the shutdown rtc argument should be declared and proto-
typed using the CCB SHUTDOWN RTC FN() macro. Pointers to them can be recorded
in variables of type CCBShutdownRTCFn.

#define CCB_SHUTDOWN_RTC_FN(fn) int (fn)(CCBServerLink *sl, \

void *data)

typedef CCB_SHUTDOWN_RTC_FN(CCBShutdownRTCFn);

When this function is called, it is passed the value of the data argument of new-
CCBServerLink(). When a shutdown is successfully initiated, shutdown rtc callbacks
should return 0. Otherwise they should return 1, and set errno accordingly.

The return value of new CCBServerDriver() is a pointer to an opaque CCBServerDriver object
that can be passed to new CCBServerLink(), or NULL if an error occurred.

Once a CCBServerDriver object has been passed to new CCBServerLink(), it shouldn’t be
deleted until after del CCBServerLink() is called to delete the corresponding server object.
Objects returned by new CCBServerDriver() are deleted by calling del CCBServerDriver().

CCBServerDriver *del_CCBServerDriver(CCBServerDriver *drv);

The argument of this function is the object to be deleted (which can be NULL. The return
value of the function is always NULL, so that one can type:

87

drv = del_CCBServerDriver(drv);

This both deletes the object pointed to by drv, and then sets this pointer to NULL, to
ensure that subsequent illegal attempts to access the object through this pointer produce a
segmentation-fault, rather than appearing to work, while actually doing something bad.

5.4 Shutting down server communications

When the CCB server shuts down, it releases the resources that were allocated by new-
CCBServerLink() and closes all of its sockets, by calling del CCBServerLink().

CCBServerLink *del_CCBServerLink(CCBServerLink *sl);

This function always returns NULL to allow the caller to type:

CCBServerLink *sl;

...

sl = del_CCBServerLink(sl);

This sets the invalidated sl pointer variable to NULL, such that if any statement subsequently
tries to access the deleted object through this pointer, it is rewarded with a segmentation
fault, rather than producing unpredictable behavior.

5.5 Server I/O multiplexing

To enable the CCB server to handle the telemetry and control links at the same time as
interacting with the CCB device driver, the server library uses non-blocking socket I/O when
reading and writing messages. The driver is expected to do the same. The select()-based
event-loop is invoked by the server by calling the ccb server event loop() function.

int ccb_server_event_loop(CCBServerLink *ccb);

The rfds and wfds arguments are the file descriptor sets that select() returned. Normally ccb-
server select args() returns 0, but if an error occurs, it returns 1 and sets errno accordingly.

88

5.6 Queuing replies to control commands

All replies to control commands are queued internally by the library, so there are no public
API functions related to this.

5.7 Queuing outgoing telemetry messages

Messages to be sent to the manager over the telemetry link are placed in message-specific
queues within the corresponding CCBServerLink object, as described in section 4.13. The ccb-
server event loop() dispatches such messages to the manager. Whenever it finishes sending
a message, it chooses a new message from the highest priority queue that contains at least
one message, encodes this and starts to send the result to the manager.

The functions that the CCB server uses to queue messages in the appropriate queues, are
documented in the following subsections.

5.7.1 Queuing outgoing monitor-data messages

The CCB server uses the ccb queue monitor msg() function to queue monitor-data messages
for later transmission.

int ccb_queue_monitor_msg(CCBServerLink *sl,

const CCBTimeStamp *ts,

unsigned long scan,

unsigned long number,

const unsigned long *values,

unsigned nvalues);

Apart from the initial sl argument, the arguments of this function are as described in sec-
tion 4.

5.7.2 Queuing outgoing integ-data messages

The CCB server uses the ccb queue integ msg() function to queue integ-data messages for
later transmission.

int ccb_queue_integ_msg(CCBServerLink *sl,

const CCBTimeStamp *ts,

unsigned long scan,

unsigned long number,

unsigned short flags,

89

const unsigned long *values,

unsigned nvalues);

Apart from the initial sl argument, the arguments of this function are as described in sec-
tion 4.

5.7.3 Queuing outgoing log-message messages

The CCB server uses the ccb log server msg() function to queue formatted log messages for
later transmission.

int ccb_log_server_msg(CCBServerLink *sl, CCBLogLevel level,

unsigned long id, const char *fmt, ...);

The level argument indicates the significance of the message, as described in section 4.

The id argument, which must be specified using the CCB LOGID() documented below, macro
is a numeric identifier of the log message. The first CCB message is assigned the value of 0,
and subsequent messages are assigned successively higher numbers. Within ccb log server-
msg(), this identification number is added to the integer offset specified in the macro CCB-
BASE LOGID, before being sent to the manager. The value of this macro is the start of the
range of message-id numbers that are uniquely assigned by Green Bank to the CCB. When
writing a new ccb log server msg() statement, the id argument must be set to CCB LOGID().
This allows the scripts that are used by the CCB makefile to search for, and subsequently fill
in, the IDs of new log statements. These scripts simply place the newly assigned ID as the
argument of the CCB LOGID() macro, which although it does nothing but echo its argument,
is retained, so that other scripts can search for it when figuring out which IDs have been used
so far. This is performed both to figure out what numbers to give new ccb log server msg()
calls, and to set the value of the CCB MAX LOGID parameter in the ccblogid.h header-file.

The fmt argument is a standard printf-style format string, and is followed by the arguments
that its format-specifiers refer to. Note that if gcc’s -Wformat warning option is used when
compiling code that calls this function, both the contents of the format string and the types
of the corresponding arguments are checked by the compiler.

Where necessary, the formatted log message is silently truncated to fit within the CCB-
MAX LOG byte maximum that is imposed by the CCBLogMsg message structure described
in section 6.

Normally ccb log server msg() returns 0, but if a serious error occurs, non-zero is returned,
and errno is set accordingly. Truncation is not considered to constitute a serious error.

90

Chapter 6

Library internals

The client and server communications libraries are comprised of three logical layers. Going
from the highest level to the lowest level layer, the layers are as follows.

• The CCB interface layer. This is the only part of the library that is specific to the
CCB. In addition to providing the public-interface functions described above, it defines
all of the CCB message types and aggregates the resources of the control and telemetry
connections.

• The message translation layer. This layer interprets the message definitions specified
by the CCB interface layer.

• The packet buffer layer. For output messages, this layer converts host-specific datatypes
to corresponding portable byte streams, and aggregates the results within the internal
packet buffer of the output stream, starting with a byte count, ready for transmission.
For input messages this layer, which is passed a completely read message within the
internal packet buffer of the input stream, decodes the contents of the message, and
passes the result to the message translation layer using native datatypes.

• The I/O layer. This layer handles non-blocking reading and writing of the raw byte
streams, of which each message is composed, using the initial 4-byte integer of each
message to determine how much to read and write.

This is illustrated in the communication stack shown in figure 6.1.

91

Figure 6.1: The CCB communications stack

92

6.1 The message translation layer

6.1.1 Message structure specification

In order to convert the contents of the previously described message structures to and from
portable network byte streams, the message-translation layer of the library needs to know
exactly what these structures contain, and how to access each of their members. This section
explains how this information is provided.

6.1.2 Supported data-types within message structures

Since the communications library can only encode and decode data-types that it knows
about, all message structures are required to have members that are declared using the
types described in the following table.

Enumerator Host data-type Network data-type
CCB NET ASCII char 8-bit unsigned char
CCB NET BYTE signed char 8-bit signed integer
CCB NET UBYTE unsigned char 8-bit unsigned integer
CCB NET SHORT short 16-bit signed integer
CCB NET USHORT unsigned short 16-bit unsigned integer
CCB NET LONG long 32-bit signed integer
CCB NET ULONG unsigned long 32-bit unsigned integer
CCB NET FLOAT float 32-bit floating point
CCB NET DOUBLE double 64-bit floating point

Note that all integer types are transfered over the network in big-endian, 2’s-complement
format, and that the two floating point data-types are transfered in big-endian IEEE-754
format.

Also note that the CCB NET ASCII enumerators tells the message translation layer that the
associated arrays of characters should be interpreted as ’\0’ terminated C strings. These are
actually transfered over the network as variable length arrays of bytes, preceded by length
counts.

6.1.3 CCBNetMsg - The base-class of all messages

The communications library requires that the first member of all message structures be a
CCBNetMsg member.

typedef struct {

93

long type; /* The type of the parent message-structure */

} CCBNetMsg;

This allows message structures to be passed to the message translation layer of the library
using pointers to their initial CCBNetMsg structure. As will be described shortly, the value
of the type member of this structure refers the library to a description of the actual message
structure that has been passed.

6.1.4 Some example message structures

To see how the contents of message structures are described to the translation-layer of
the communications library, consider the following two example message structures, called
CCBExampleMsg1, and CCBExampleMsg2:

#define SDIM 20; /* The size of the example string member */

/* in the following message structure. */

typedef struct { /* Example message structure 1 */

CCNNetMsg base; /* The message identification header */

char string[SDIM]; /* A string to be transmitted */

unsigned short slen; /* strlen(string) */

} CCBExampleMsg1;

typedef struct { /* Example message structure 2 */

CCNNetMsg base; /* The message identification header */

unsigned long foo; /* A <= 32-bit unsigned number */

} CCBExampleMsg2;

6.1.5 CCBNetMsgMember – Message field descriptions

With the exception of the obligatory initial CCBNetMsg member, each member of each
message structure is described to the library using a CCBNetMsgMember structure.

typedef struct {

const char *name; /* The textual name of the member */

size_t offset; /* The byte-offset of the member in the */

/* local message structure */

CCBNetDataType type; /* The enumerated data-type of the member */

int ntype; /* The number of elements in the member */

} CCBNetMsgMember;

94

The following example code shows how arrays of these CCBNetMsgMember structures are
used to describe the elements of the two example message structures.

#include <stddef.h>

#include "ccbnetobj.h"

/* The description of the members of CCBExampleMsg1 */

static const CCBNetMsgMember ccb_example_msg1_members[] = {

{"string", offsetof(CCBExampleMsg1, string), CCB_NET_ASCII, SDIM},

{"slen", offsetof(CCBExampleMsg1, slen), CCB_NET_USHORT, 1},

};

/* The description of the members of CCBExampleMsg2 */

static const CCBNetMsgMember ccb_example_msg2_members[] = {

{"foo", offsetof(CCBExampleMsg2, foo), CCB_NET_ULONG, 1},

};

6.1.6 CCBNetMsgInfo – Individual message descriptions

In addition to descriptions of the contents of each message type, the communications library
needs to know both the host-dependent size of the message data-structures, and a convenient
way for the various parts of the library to refer each other to a given type of message. Each
message is thus further described using a CCBNetMsgInfo structures.

typedef struct {

int type; /* The message-type enumerator */

const char *name; /* The name of this message-type */

const CCBNetMsgMember *member; /* Descriptions of each member */

int nmember; /* The number of elements in member[] */

size_t native_size; /* The host-dependent size of the */

/* the corresponding message structure */

} CCBNetMsgInfo;

The name field, which isn’t currently used by the library, may in future be used when printing
out the contents of messages for debugging purposes.

For a given network connection, the communications library needs separate descriptions
of the messages that it is expected to transmit, and those that it is expected to receive.
To do this the CCB interface layer registers two arrays of CCBNetMsgInfo structures per
connection, one describing outgoing messages, while the other describes incoming messages.

95

The indexes of elements in these arrays are the means by which the various parts of the
library, at both ends of the communications link, refer each other to a given message type.
Since the index associated with a given message type will change if somebody inserts a
new message type in the middle of a message-description array, the CCB interface layer
assigns a copy of the enumerator that it uses to refer to each message type, to the type field
of the corresponding CCBNetMsgInfo message-definition element. This allows the message-
translation layer to verify that these enumerators match the array indexes of the messages to
which they refer. Thereafter, whenever the CCB interface layer passes a message structure
to the message-translation layer for transmission over the network, it sets the type member
of the CCBNetMsg structure accordingly, to tell the message-translation layer what type of
message structure it is being passed. Similarly, when the message-translation layer receives
a message from the network, it records the type of message that it received, in the type
member of the CCBNetMsg structure that it returns.

Returning to the example, the types of the example messages would be enumerated, and
described in a message-definition array, as follows:

typedef enum {

CCB_EXAMPLE_MSG1, /* The index of the first example message */

CCB_EXAMPLE_MSG2 /* The index of the second example message */

} CCBExampleMsgTypes;

static const CCBNetMsgInfo ccb_example_messages[] = {

{CCB_EXAMPLE_MSG1, "example1", ccb_example_msg1_members,

NET_ARRAY_DIM(ccb_example_msg1_members), sizeof(CCBExampleMsg1)},

{CCB_EXAMPLE_MSG2, "example2", ccb_example_msg2_members,

NET_ARRAY_DIM(ccb_example_msg2_members), sizeof(CCBExampleMsg2)},

};

In this example CCBExampleMsgTypes associates symbolic names with the indexes of the
correspondingly messages in the ccb example messages[] array, while the latter array provides
the description of all messages for one direction of a communications link.

6.2 The CCB interface layer

For each of the message queuing and received-message callback functions in the public API,
the CCB interface layer defines a message structure for passing the corresponding message
to and from the message-translation layer of the library. The following sub-sections briefly
describe these structures. Note that since these structures are hidden within the communi-
cations library, provided that the library is compiled as a shared library, the contents of the
message structures can be rearranged without requiring a recompilation of the manager or

96

the CCB server.

6.2.1 The message structures of outgoing control messages

As previously mentioned, the message-translation layer requires that all messages being
transmitted over a particular network connection be internally enumerated by the CCB-
interface layer. This enumeration is used to communicate message types both between
the CCB-interface and message-translation layers of the library, and between the separate
message-translation layers at the two ends of the communications link. The CCBControl-
CommandType enumeration serves this role for outgoing messages on the control link.

typedef enum {

CCB_PHASE_SWITCH_CMD, /* A phase-switch config command */

CCB_CAL_DIODE_CMD, /* A cal-diode config command */

CCB_TIMING_CMD, /* An timing config command */

CCB_SAMPLER_CMD, /* An sampler config command */

CCB_START_SCAN_CMD, /* A start-scan command */

CCB_STOP_SCAN_CMD, /* A stop-scan command */

CCB_DUMP_SCAN_CMD, /* A dump-scan command */

CCB_MONITOR_CMD, /* A monitoring control command */

CCB_TELEMETRY_CMD, /* A telemetry stream control command */

CCB_LOGGER_CMD /* A log control command */

CCB_RESET_CMD, /* A reset command */

CCB_PING_CMD, /* a ping command */

CCB_STATUS_REQUEST_CMD, /* a status-request command */

CCB_SHUTDOWN_CMD, /* A computer shutdown command */

CCB_REBOOT_CMD, /* A computer reboot command */

CCB_LOAD_DRIVER_CMD /* A device-driver loading command */

} CCBControlCommandType;

As documented on page 54, all control command messages include a manager-provided in-
teger identifier, which is used by the CCB server to associate acknowledgment replies with
the messages that they refer to. Beware that this is unrelated to the internal enumerated
command-type IDs used by the library. All outgoing control messages thus have two members
in common, the mandatory CCBNetMsg initial member of all CCB network messages, which
contains the internal message-type identifier of the library, and a manager-provided message
identifier. To allow generic access to these two common members by the CCB interface layer,
regardless of control-message type, they are aggregated into a CCBControlCommandHeader
structure, which is the first member of all outgoing control-message structures.

typedef struct {

CCBNetMsg base; /* The initial member of all messages */

long id; /* The manager’s identifier of the */

97

/* parent message. */

} CCBControlCommandHeader;

Since all message structures start with a CCBControlCommandHeader member, whose first
member is a CCBNetMsg object, a pointer to the head.base member of the following union of
all outgoing control-message structures can portably be used to exchange any of these mes-
sages between the CCB-interface layer and message-translation layer of the communications
library. The actual type of message passed in this way can be determined from the type
member of the CCBNetMsg object.

typedef union {

CCBControlCommandHeader head;/* The common control message header */

CCBPhaseSwitchCmd phase_cmd; /* head.base.type=CCB_PHASE_SWITCH_CMD */

CCBCalDiodeCmd diode_cmd; /* head.base.type=CCB_CAL_DIODE_CMD */

CCBTimingCmd timing_cmd; /* head.base.type=CCB_TIMING_CMD */

CCBSamplerCmd sampler_cmd; /* head.base.type=CCB_SAMPLER_CMD */

CCBStartScanCmd start_scan; /* head.base.type=CCB_START_SCAN_CMD */

CCBStopScanCmd stop_scan; /* head.base.type=CCB_STOP_SCAN_CMD */

CCBDumpScanCmd dump_scan; /* head.base.type=CCB_DUMP_SCAN_CMD */

CCBMonitorCmd monitor; /* head.base.type=CCB_MONITOR_CMD */

CCBTelemetryCmd telemetry; /* head.base.type=CCB_TELEMETRY_CMD */

CCBLoggerCmd logger; /* head.base.type=CCB_LOGGER_CMD */

CCBResetCmd reset; /* head.base.type=CCB_RESET_CMD */

CCBPingCmd ping; /* head.base.type=CCB_PING_CMD */

CCBStatusRequestCmd status; /* head.base.type=CCB_STATUS_REQUEST_CMD */

CCBShutdownCmd shutdown; /* head.base.type=CCB_SHUTDOWN_CMD */

CCBRebootCmd reboot; /* head.base.type=CCB_REBOOT_CMD */

CCBLoadDriverCmd driver; /* head.base.type=CCB_LOAD_DRIVER_CMD */

} CCBControlCommand;

CCBPhaseSwitchCmd – The phase-switching configuration command

The ccb queue start start cmd() and ccb queue stop scan cmd() functions both queue message
structures of the following type for transmission when the phase-switch parameters of the
commanded scan differ from those of the previous scan.

typedef struct {

CCBControlCommandHeader head; /* head.base.type=CCB_PHASE_SWITCH_CMD */

CCBPhaseSwitchCnf cnf; /* The phase-switch configuration */

/* parameters. */

} CCBPhaseSwitchCmd;

98

CCBCalDiodeCmd – The calibration diode configuration command

The ccb queue start scan cmd() and ccb queue stop scan cmd() functions both queue mes-
sage structures of the following type for transmission when the cal-diode parameters of the
commanded scan differ from those of the previous scan.

typedef struct {

CCBControlCommandHeader head; /* head.base.type=CCB_CAL_DIODE_CMD*/

CCBCalDiodeCnf cnf; /* The cal-diode configuration */

/* parameters. */

} CCBCalDiodeCmd;

CCBTimingCmd – The acquisition-timing configuration command

The ccb queue start start cmd() and ccb queue stop scan cmd() functions both queue message
structures of the following type for transmission when the hardware-timing parameters of
the commanded scan differ from those of the previous scan.

typedef struct {

CCBControlCommandHeader head; /* head.base.type=CCB_TIMING_CMD */

CCBTimingCnf cnf; /* The timing configuration */

/* parameters. */

} CCBTimingCmd;

CCBSamplerCmd – The sampler configuration command

The ccb queue start start cmd() and ccb queue stop scan cmd() functions both queue message
structures of the following type for transmission when the hardware-sampler parameters of
the commanded scan differ from those of the previous scan.

typedef struct {

CCBControlCommandHeader head; /* head.base.type=CCB_SAMPLER_CMD */

CCBSamplerCnf cnf; /* The sampler configuration */

/* parameters. */

} CCBSamplerCmd;

99

CCBStartScanCmd – The start-scan command

The ccb queue start scan cmd() function queues message structures of the following type,
ready for later exchange with the message translation layer.

typedef struct {

CCBControlCommandHeader head; /* head.base.type=CCB_START_SCAN_CMD */

unsigned long scan; /* The numeric ID to give the new */

/* scan. */

unsigned long mjd; /* The MJD UTC day number */

unsigned long tod; /* The time of day (seconds since */

/* 0H UTC). */

} CCBStartScanCmd;

CCBStopScanCmd – The stop-scan command

The ccb queue stop scan cmd() function queues message structures of the following type,
ready for later exchange with the message translation layer.

typedef struct {

CCBControlCommandHeader head; /* head.base.type=CCB_STOP_SCAN_CMD */

unsigned long scan; /* The numeric ID to give the new */

/* intra-scan. */

} CCBStopScanCmd;

CCBDumpScanCmd – The dump-scan command

The ccb queue dump scan cmd() function queues message structures of the following type,
ready for later exchange with the message translation layer.

typedef struct {

CCBControlCommandHeader head; /* head.base.type=CCB_DUMP_SCAN_CMD */

unsigned long scan; /* The numeric ID to give the new */

/* intra-scan. */

unsigned short adc; /* The ADC to dump */

unsigned long samples; /* The max number of samples to */

/* collect per integration. */

unsigned long frames; /* The number of per-integration */

/* data-frames to deliver. */

} CCBDumpScanCmd;

100

CCBMonitorCmd – The monitor command

The ccb queue monitor cmd() function queues message structures of the following type, ready
for later exchange with the message translation layer.

typedef struct {

CCBControlCommandHeader head; /* head.base.type=CCB_MONITOR_CMD */

unsigned short period; /* The interval between monitoring */

/* updates. */

} CCBMonitorCmd;

CCBTelemetryCmd – The telemetry command

The ccb queue telemetry cmd() function queues message structures of the following type,
ready for later exchange with the message translation layer.

typedef struct {

CCBControlCommandHeader head; /* head.base.type=CCB_TELEMETRY_CMD */

unsigned short streams; /* The telemetry-streams to report */

} CCBTelemetryCmd;

CCBLoggerCmd – The logger command

The ccb queue logger cmd() function queues message structures of the following type, ready
for later exchange with the message translation layer.

typedef struct {

CCBControlCommandHeader head; /* head.base.type=CCB_LOGGER_CMD */

unsigned long period; /* The interval at which */

/* historical log messages are */

/* forgotten (seconds). */

} CCBLoggerCmd;

CCBResetCmd – The reset command

The ccb queue reset cmd() function queues message structures of the following type, ready
for later exchange with the message translation layer.

typedef struct {

CCBControlCommandHeader head; /* head.base.type=CCB_RESET_CMD */

} CCBResetCmd;

101

CCBPingCmd – The ping command

The ccb queue ping cmd() function queues message structures of the following type, ready
for later exchange with the message translation layer.

typedef struct {

CCBControlCommandHeader head; /* head.base.type=CCB_PING_CMD */

} CCBPingCmd;

CCBStatusRequestCmd – The status-request command

The ccb queue status request cmd() function queues message structures of the following type,
ready for later exchange with the message translation layer.

typedef struct {

CCBControlCommandHeader head; /* head.base.type = */

/* CCB_STATUS_REQUEST_CMD */

} CCBStatusRequestCmd;

CCBShutdownCmd – The shutdown command

The ccb queue shutdown cmd() function queues message structures of the following type,
ready for later exchange with the message translation layer.

typedef struct {

CCBControlCommandHeader head; /* head.base.type=CCB_SHUTDOWN_CMD */

} CCBShutdownCmd;

CCBRebootCmd – The reboot command

The ccb queue reboot cmd() function queues message structures of the following type, ready
for later exchange with the message translation layer.

typedef struct {

CCBControlCommandHeader head; /* head.base.type=CCB_REBOOT_CMD */

} CCBRebootCmd;

102

CCBLoadDriverCmd – The load driver command

The ccb queue load driver cmd() function queues message structures of the following type,
ready for later exchange with the message translation layer.

typedef struct {

CCBControlCommandHeader head; /* head.base.type=CCB_LOAD_DRIVER_CMD */

unsigned short type; /* A CCBDriverType enumerator */

} CCBLoadDriverCmd;

6.2.2 The message structures of incoming control-link replies

For incoming messages sent by the CCB server to the manager over the control-link, the
CCB-interface layer enumerates the known types of reply message as follows.

typedef enum {

CCB_CNTRL_PING_REPLY, /* A ping reply */

CCB_STATUS_REPLY, /* A status-request reply */

CCB_CNTRL_CMD_ACK /* A control command-acknowledgement reply */

} CCBControlReplyType;

The first member of all control-reply message structures is a CCBControlReplyHeader struc-
ture.

typedef struct {

CCBNetMsg base; /* The base-class of all messages */

} CCBControlReplyHeader;

Since all message structures start with a CCBControlReplyHeader member, a pointer to the
head member of the following union of all incoming control-link message structures can
portably be used to exchange any control-link ping reply message between the internal layers
of the library, with the head.base.type member of the union being used to determine what
type of message is actually being passed.

typedef union {

CCBControlReplyHeader head; /* The common header of all control */

/* link replies. */

CCBCntrlPingReply ping; /* base.type = CCB_CNTRL_PING_REPLY */

CCBStatusReply status, /* base.type = CCB_STATUS_REPLY */

CCBCntrlCmdAck cmd_ack; /* base.type = CCB_CNTRL_CMD_ACK */

} CCBControlReply;

103

CCBCntrlPingReply – A reply to a ping command

Replies to ping commands over the control link are exchanged with the message translation
layer in structures of the following type.

typedef struct {

CCBControlReplyHeader head; /* head.base.type=CCB_CNTRL_PING_REPLY */

} CCBCntrlPingReply;

CCBStatusReply – A reply to a status-request command

Callback functions registered with ccb status reply callback() are invoked whenever a message
structure of the following type is received by the communications library.

typedef struct {

CCBControlReplyHeader head; /* head.base.type = */

/* CCB_STATUS_REPLY */

unsigned long status; /* The status of the CCB */

} CCBStatusReply;

CCBCntrlCmdAck – An acknowledgment to a control command

Whenever a message structure of the following type is received by the communications library,
if the status member is anything other than CCB CMD ACCEPTED, then the library invokes
the callback that the manager previously provided when it called ccb cmd error callback().

typedef struct {

CCBControlReplyHeader head; /* head.base.type=CCB_CNTRL_CMD_ACK */

unsigned long id; /* The manager-specified ID of */

/* the command that is being */

/* acknowledged. */

unsigned long status; /* A CCBCmdStatus enumerator */

} CCBCntrlCmdAck;

6.2.3 The message structures of incoming telemetry messages

This section documents the data structures that are exchanged between the CCB interface
layer and the message translation layer at both ends of the telemetry link. The CCB interface
layer defines the following enumeration to distinguish between the various message types

104

encoded in these message structures.

typedef enum {

CCB_INTEG_MSG, /* An integration data message */

CCB_MONITOR_MSG, /* A monitoring data message */

CCB_LOG_MSG, /* A log message */

CCB_TELEM_PING_REPLY /* A reply to a ping command */

} CCBTelemetryType;

The first member of all telemetry message structures is a CCBTelemetryHeader structure,
which is defined as follows.

typedef struct {

CCBNetMsg base; /* The base-class of all messages */

unsigned long mjd; /* The MJD UTC day number */

unsigned long sec; /* The time of day (seconds since 0H UTC) */

unsigned long ns; /* The number of nanoseconds from */

/* the start of the specified second. */

} CCBTelemetryHeader;

Note that the obligatory CCBNetMsg member of all network messages is the first member of
this structure. The remaining members report the date and time at which the message was
generated.

Since all telemetry message structures start with a CCBTelemetryHeader member, a pointer
to the head member of the following union can be used as a pointer to any type of telemetry
message. The base.type member of this header can then be used to determine which type of
telemetry message the pointer actually refers to.

typedef union {

CCBTelemetryHeader head; /* The common telemetry header */

CCBIntegMsg integ; /* An integration data message */

CCBMonitorMsg monitor; /* A monitor data message */

CCBLogMsg log; /* A log message */

CCBTelemPingReply ping; /* A reply to a ping command */

} CCBTelemetryMessage;

The data-structures within this union, are declared as follows.

CCBIntegMsg – Integration data messages

Callback functions registered with ccb integ msg callback() are invoked whenever a message
structure of the following type is received by the communications library over the telemetry

105

link.

#define CCB_MAX_INTEG 64 /* The maximum number of total-power */

/* measurements from any instrument */

typedef struct {

CCBTelemetryHeader head; /* head.base.type=CCB_INTEG_MSG */

unsigned long scan; /* The number of the parent scan */

unsigned long id; /* The integration ID */

unsigned short flags; /* Single-bit status flags */

unsigned long data[CCB_MAX_INTEG]; /* The integrated data */

} CCBIntegMsg;

CCBMonitorMsg – Monitor data messages

Callback functions registered with ccb monitor msg callback() are invoked whenever a mes-
sage structure of the following type is received by the communications library over the
telemetry link.

#define CCB_MAX_MONITOR=16 /* The maximum number of monitoring */

/* measurements from any instrument */

typedef struct {

CCBTelemetryHeader head; /* head.base.type=CCB_MONITOR_MSG */

unsigned long scan; /* The number of the parent scan */

unsigned long id; /* The monitor ID */

unsigned long data[CCB_MAX_MONITOR]; /* The monitor data */

} CCBMonitorMsg;

CCBLogMsg – CCB log messages

Callback functions registered with ccb log msg callback() are invoked whenever a message
structure of the following type is received by the communications library over the telemetry
link.

#define CCB_MAX_LOG 128 /* The maximum length of a log */

/* message. */

typedef struct {

CCBTelemetryHeader head; /* head.base.type=CCB_LOG_MSG */

char msg[CCB_MAX_LOG]; /* The message to be logged */

unsigned long id; /* A unique message identifier */

unsigned short level; /* The severity level of the message */

} CCBLogMsg;

106

CCBTelemPingReply – A reply to a ping command

Replies to ping commands over the telemetry link are exchanged with the message translation
layer in structures of the following type.

typedef struct {

CCBTelemetryHeader head; /* head.base.type=CCB_TELEM_PING_REPLY */

} CCBTelemPingReply;

6.3 Sending network messages

As mentioned earlier, output control messages are queued for transmission in a queue
of message structures, then dispatched to the server by one or more calls to ccb client-
communicate(). While ccb client communicate() is running, if the I/O layer finishes trans-
mitting a message, the message-translation layer does the following.

1. It removes the message structure of the next oldest message from the queue.

2. It then calls a function in the packet-buffer layer which:

(a) Clears the output buffer and resets its read and write pointers to point to the
start of the buffer.

(b) Writes a zero-valued big-endian byte-count in the first 4 bytes of the buffer.

(c) Writes the enumerated type of the message, as passed to it by the message-
translation layer, expressed as an unsigned 2-byte big-endian integer.

(d) Increments the buffer write-pointer to point to the byte following the above two
items.

3. For each member within the message structure, the message-translation layer then calls
a function in the API of the packet-buffer layer, chosen according to the type of the
structure member, to have the value of the member appended to the current message
within the buffer. These functions all increment the buffer write-pointer to point to
the byte in the buffer which follows the data that they appended.

4. Once all structure members have been packed into the buffer, the message-translation
layer then calls a function of the packet-buffer API to terminate the message in the
buffer. This function replaces the zero-valued byte-count at the start of the buffer with
the count of the actual number of bytes used by the message in the buffer.

5. Finally, the message-translation layer calls a function in the I/O layer to start writing
the contents of the buffer to the control socket. As the I/O layer does this, it increments
the read-pointer of the packet-buffer, so that it knows from where to resume if the socket
blocks when non-blocking I/O is in use. If it completes writing the latest message, it

107

goes back to step one, to get the next unsent message. Otherwise, it returns control to
the manager, and tells the manager to call ccb client communicate() again when output
again becomes possible, so that it can resume sending the current message.

6.4 Receiving network messages

As already documented, messages are read from the telemetry port of the server by calling
ccb client communicate(). At the start of reading each new message, this function does the
following:

1. It tells the packet-buffer layer of the telemetry connection to clear its input buffer.
This also resets the read and write pointers of the buffer to point to its first byte.

2. It instructs the I/O layer to attempt to read the initial 4 byte, byte count into the
message buffer.

3. In practice, if non-blocking I/O is in effect, a few calls may be needed to ccb client-
communicate() before the byte count is completely read.

4. Once the I/O layer has the byte count, it knows how many more bytes it will need to
read to acquire the new message.

5. The I/O layer then attempts to read the rest of the message. Again, this may require
multiple calls to ccb client communicate() when non-blocking I/O is being used.

6. Once the message has been completely read into the input packet-buffer, the message
translation layer then decodes the message-type enumeration that follows the byte
count, and uses this to identify the type of the message within its table of message
definitions.

7. According to the member descriptions in the definition of the message, the message-
translation layer now calls the appropriate datatype-specific functions in the packet-
buffer layer to decode the values of each member of the message, and records the results
in an internal message structure.

8. The completed message structure is then passed up to ccb client communicate(), which
invokes the corresponding callback function to deliver the contents of the message to
the manager.

The equivalent procedure is of course performed for the replies received over the control link,
and this uses all of the same functions, except that different callback functions are called to
deliver messages to the manager.

108

Appendix A

Changes to the library in version 2.0

Version 1 of the CCB communications libraries was released before much work had been done
on either the CCB firmware or the CCB manager. Subsequent work on those components
revealed the need for a few changes to the libraries. The following sections describe changes
to the public library APIs and to the behavior of the demonstration/test programs. Bug-fixes
are not discussed.

A.1 Changes to the shared parts of the client and server

APIs

A.1.1 Added functions

• ccb settling time()

This function returns the settling time corresponding to any given combination of
changes in cal-diode and phase-switch states, according to the specified CCB config-
uration. In particular, this is now used by the software simulator to determine how
many integrations to flag when it toggles the states of one or both of the cal-diode
switches.

• ccb integ per interval()

This function computes and returns a count of the number of integration periods that
will completely fit within a given time-interval, and the remaining time-duration of
any final partial integration. In particular, this can be used to compute the number of
integrations needed to generate a scan of a given time-duration.

• ccb cal cycle length()

109

This returns a count of the number of integrations needed to complete a single cali-
bration cycle.

• ccb set sampler cnf()

This installs the configuration of the sample inputs of the slave FPGAs. This is used
to select whether the integrators and dump-mode frames get their input samples from
the real ADCs, or from a generator of fake, pseudo-random samples.

• ccb get sampler cnf()

This returns the current sampler configuration from a given configuration object.

• ccb interval is zero()

This is a simple utility function which returns a truth value if its CCBInterval argument
denotes a time interval of zero.

A.1.2 Added datatypes

• CCBSampleType

This is an enumeration which lists the types of sample inputs that can be configured
when calling the ccb set sampler cnf() function.

• CCBSamplerCnf

This is a structure which encapsulates the configuration information that is returned by
calling the ccb get sampler cnf() function, or installed when calling the ccb set config()
function.

• CCBDriverType

This is an enumeration which lists the types of target drivers that can be loaded when
calling the ccb queue load driver cmd() function.

• CCBIntegFlags

This is an enumeration of the set of integration-status flags that may be encountered,
bitwise OR’d together, within the newly added flags header-parameter of each integra-
tion.

110

A.1.3 Added constants

• CCB NUM ADC

This constant parameterizes the number of slots for ADCs in the CCB (ie. 16).

• CCB DUMP MAX SAMPLES

When commanding a dump-mode scan, this value can be used to request that as many
samples as possible, be collected from each integration of the scan.

• CCB DUMP ALL FRAMES

When commanding a dump-mode scan, this value tells the driver to indefinitely dump
one dump-mode frame per integration, until a new scan or intra-scan is commanded.

• CCB MAX ROUNDTRIP DT

This value of this constant is the maximum permitted value of the CCB↔receiver
round-trip propagation-delay configuration parameter.

• CCB MAX HOLDOFF DT

This value of this constant is the maximum permitted value of the interrupt holdoff-
delay configuration parameter.

A.1.4 Functions with modified APIs

• ccb set config()

This function now has an additional sampler argument, used for installing the newly
added configuration of the hardware input sampling.

• ccb integration duration()

Now that the hardware specification no longer calls for settling-time delays to be in-
serted at the start of some integrations, all integrations now have the same physical
duration. Thus the integration argument, which specified which integration’s duration
was to be characterized, has been removed.

• ccb set phase switch cnf()

111

Now that the receivers have taken on the responsibility for determining which backend
drives their cal-diode and phase switches, there is no longer any point in tri-stating the
CCB’s switch-control outputs. Thus the driven switches argument has been removed.

• ccb set cal diode cnf()

As described above for the phase-switch drivers, the driven diodes argument is now
superfluous, and has been removed.

• ccb set timing cnf()

The sample dt and analog reset dt timing-configuration arguments were specific to a
now-abandoned scheme, where analog integrators were used to drive low-speed ADCs.
Now that this scheme has been replaced by one that uses digital integrators and fast
ADCs, these arguments have no meaning, and have thus been removed.

Also, while working through the designs of the analog and digital electronics, it be-
came apparent that there would be roughly a 1µs delay between the CCB backend
commanding a change in state of any of the cal-diode and phase switches, and the first
effects of this reaching the inputs of the digital integrators. Although this delay could
have been accommodated by extending the cal-diode and phase-switch settling times,
such that samples during this round-trip delay were blanked, this would have unnec-
essarily thrown away some good data each time that the phase-switches were toggled.
Thus a new roundtrip dt configuration argument has been added to parameterize this
propagation delay, and thus allow the CCB hardware to continue to collect data during
this interval.

Finally, the implementation of the interrupt-generation logic indicated the need for
a configuration parameter to limit the maximum rate at which the CCB hardware
should generate interrupts. Thus a new holdoff dt configuration argument has been
added. This specifies how long the hardware should wait between sending one interrupt
and sending the next, including how often it should re-signal any unacknowledged
interrupts.

A.1.5 Modified datatypes

• CCBGeneralStatus

Now that the CCB no longer has a hardwired standby state, the CCB library no longer
knows when the manager has placed the CCB in what it deems to be a standby state.
Thus the CCB status-reports can no longer include an indication of when the CCB is
in standby mode. The CCB STANDING BY enumerator has thus been removed from
the status enumeration.

112

• CCBConfigType

The group of configuration parameters represented by the new sampler configuration,
required the addition of a corresponding enumerator (CCB CNF SAMPLER) to the
CCBConfigType enumeration.

• CCBPhaseSwitchCnf

The superfluous driven switches parameter has been removed, as already explained for
the ccb set phase switch cnf() function.

• CCBCalDiodeCnf

The superfluous driven diodes parameter has been removed, as already explained for
the ccb set cal diode cnf() function.

• CCBTimingCnf

As explained already for the ccb set timing cnf() function, the sample dt and analog-
reset dt members of the timing configuration have been removed, and new roundtrip dt
and holdoff dt members have been added.

A.1.6 Functions with modified behaviors

• ccb integration duration()

As already mentioned, this function no longer inserts settling-time delays at the start
of integrations.

A.1.7 Removed functions

• ccb cal diode delay()

This function determined the calibration-diode settling-time delay to insert at the
start of a given integration. Now that such delays are no longer inserted at the start
of integrations, this function has been removed. For simulation purposes, the new
ccb settling time() function provides the equivalent functionality for determining how
much data will be flagged after arbitrary cal-diode and/or phase-switch changes.

• ccb nocal duration()

113

This function computed the constant part of the physical duration of an integration
that followed any calibration-diode settling-time delays that were inserted between
integrations. Now that no such delays are inserted, the more appropriately named
ccb integration duration() function supersedes this function.

A.2 Changes to the client-specific parts of the public

API

A.2.1 Added functions

• ccb queue load driver cmd()

This should be called before any commands are sent to the CCB, and determines
whether subsequent commands will be sent to the real hardware or to a software
simulator of the hardware. It can thereafter be sent at any time to switch between
drivers.

• ccb queue dump scan cmd()

This function is used to initiate a dump-mode scan. This type of scan writes data-
frames of unintegrated samples to a named pipe on the CCB computer, instead of
sending frames of integrated data to the manager.

A.2.2 Functions with modified APIs

• ccb integ msg callback()

The arguments of the CCBIntegMsgFn callback function argument have changed, as
described below.

A.2.3 Modified datatypes

• CCBIntegMsgFn

Functions of this type are called to deliver integrated data to the manager. Such call-
back functions now include an extra flags argument, which contains a set of integration-
status flags, describing such things as the states of the cal-diodes, which slave FPGA
boards are present, and whether the parent integration should be flagged.

114

A.2.4 Removed functions

• ccb queue standby cmd()

Previously this function did two things. It temporarily turned off specified telemetry
streams to the manager, and placed its receiver control outputs in a high impedance
state. Now that the receiver-control lines are no longer tri-stated, this function was left
solely with the duty of controlling which telemetry streams were active during, what it
considered to be its standby state. Since this could already be done, in a more general
way, by the ccb queue telemetry cmd() function, and because the library’s idea of what
constituted standby mode, differed from Green Bank conventions, the redundant ccb-
queue standby cmd() function has been removed.

• ccb queue awaken cmd()

This function’s sole purpose was to undo what the ccb queue standby() function did, so
now that the latter function has been removed, the ccb queue awaken cmd() function
has also been removed.

A.3 Changes to the server-specific parts of the public

API

A.3.1 Added functions

• new CCBServerDriver()

This function allocates an object which encapsulates the method functions and data
that implement the server’s interface to either the real or the virtual CCB drivers.

• del CCBServerDriver()

This function reclaims the resources of an object that was previously returned by
new CCBServerDriver().

• ccb server event loop()

The server event-loop has now been moved inside the library, since it needs to operate
above the drivers. This function invokes the CCB server’s event-loop.

115

A.3.2 Functions with modified APIs

• new CCBServerLink()

Previously this function’s arguments were the method functions and callback data that
implemented the CCB driver interface. Now that the server needs to support switching
between two such interfaces, to allow targeting either the CCB hardware, or a software
simulator, the interface functions and data of a given driver have been moved into
CCBServerDriver objects, which are now allocated by the new new CCBServerDriver()
function. The original arguments of the new CCBServerLink() function have thus been
replaced by pointers to two CCBServerLink objects, representing the real and virtual
drivers.

• ccb queue integ msg()

Integrations now include a new integration-status parameter, so this function, which
queues an integration to be sent to the manager, now includes a corresponding extra
flags argument.

A.3.3 Added datatypes

• CCBServerDriver

As already mentioned, this new type of object encapsulates the method functions and
callback data which implement the interface of a given CCB driver.

• CCBDrvDumpScan

This structure encapsulates the parameters that determine the dump-mode-specific
behavior of a dump-mode scan, and is used to pass this data to a CCB driver.

• CCBDriverSelectEventsFn

This is a new driver function which tells the server which select() file-descriptor and
timeout events it wishes to have it watch for.

• CCBDriverCheckEventsFn

This is a new driver function which responds to events reported by select().

116

A.3.4 Modified datatypes

• CCBDriverCmd

In the original version of the library, the server could control which CCB interrupts
were enabled, and when. In retrospect there doesn’t seem to be any good reason for
it to do this, since the driver can turn on interrupts at load time, and turn them off
at unload time. Thus the intr (interrupt mask) member of the pars union has been
removed.

A new dump member has been added to the pars union, for passing the driver the
dump-specific configuration parameters of a dump-mode scan.

• CCBDriverCmdID

The removal of the driver interrupt-mask command, and the addition of the dump-
scan command, dictated the removal of the CCB DRV INTR MASK enumerator, and
the addition of the CCB DRV DUMP SCAN enumerator.

• CCBDrvConfScan

The addition of the sampler configuration group, required the addition of a sampler
member in the driver interface’s configuration-parameter object.

• CCBDriverLoadFn, CCBDriverUnloadFn, CCBDriverTellFn, CCBRebootRTCFn, CCBShut-
downRTCFn

All of these functions now take an extra initial argument, which provides them with
the CCBServerLink object of the server.

A.3.5 Removed functions

• ccb server communicate and ccb server select args

Now that the CCB server’s event-loop has been moved inside the new ccb server event-
loop() function, the above two functions have been made private to the library.

A.3.6 Removed Datatypes

• CCBDrvInterrupt

This enumeration listed the types of interrupt that could be enabled and disabled
by the server. Now that the server doesn’t control interrupts, this enumeration is
superfluous.

117

• CCBDrvIntrMask

This structure, which previously was used to communicate the server’s choice of inter-
rupt mask to the driver, was superfluous.

A.4 Changes to the demonstration programs

A.4.1 The evolution of ccb demo server into ccbserver

The ccb demo server program has been replaced by the new ccbserver program. The new
program, which will become the production CCB server, is able to switch between a virtual
(demonstration) driver and the real CCB driver. Thus, once the manager has connected to
the CCB server, it will be able to switch, at any time, between off-line testing using the
virtual driver, and on-line interaction with the real CCB hardware. This is achieved by the
manager, by calling the new ccb queue load driver cmd() function to load either the real or
virtual CCB drivers. When the virtual driver is loaded, ccbserver acts like ccb demo server
used to act, except that the simulation has been updated to accomodate the new timing
model, and other new features in the library. In particular, note that the simulation goes as
far as flagging fake integrations that are generated during the settling-time delays following
cal-diode switches, just as would happen in the CCB hardware.

At the moment, if the manager uses the ccb queue load driver cmd() function to request that
the real CCB driver be loaded, the server does load the real driver. However, since the real
driver is currently just a set of stubbed functions which report a “not implemented yet” error
to the server and to the manager, the server ends up unloading the problematic driver, and
then goes back to waiting for commands from the manager, without any driver loaded. Thus,
until the manager next tells the server to load the virtual driver, subsequent commands sent
to the driver result in “no driver loaded” error messages being sent back to the manager.

A.4.2 Changes to the features of ccb demo client

In the ccb demo client demonstration program, there is a new pane for initiating and con-
trolling dump-mode scans, and a new pane for specifying whether ADC samples or pseudo-
random, fake, samples should be collected. There is also a new parameter for switching
between the simulation driver and the real CCB driver, although for the moment, select-
ing the real driver elicits an error message from the demo-server, saying that the driver’s
functions aren’t implemented. The timing-control panel no longer has entry areas for the
removed analog reset dt and sample dt parameters, but now has additional fields for the new
roundtrip dt and holdoff dt parameters. The standby and awaken buttons have been removed,
and the stream-selection radio-button-menu has been replaced by three buttons, called off,
standby and ready. The latter three buttons invoke the ccb queue telemetry cmd() function,

118

to select appropriate sets of telemetry streams, as follows:

• stop – Log messages.

• standby – Log messages, and monitoring data.

• ready – Log messages, monitoring data, and integrated data.

These are intended to reflect the modes of the same name that are used by the manager.
After making a new connection to a server, the demo automatically loads whichever driver
is specified by the Load driver option menu, and configures the telemetry stream to the off
state, as indicated by the off button being red. It is necessary to hit the ready button before
any integrated data will be displayed.

119

Index

Function index
ccb add intervals() 35
ccb add to timestamp() 42
ccb cal cycle length() 40
ccb check config 23
ccb client communicate() 50
ccb client connect() 48
ccb client disconnect() 49
ccb client poll args() 52
ccb client select args() 51
ccb client non blocking io() 50
ccb client selected io() 51
ccb client sockets callback() 52
ccb clock interval() 37
ccb cmd error callback() 54
ccb compare intervals() 36
ccb compare timestamps() 41
ccb copy config() 23
ccb cycle length() 38
ccb default config() 22
ccb diff config() 23
ccb get cal diode cnf() 28
ccb get phase switch cnf() 26
ccb get sampler cnf() 33
ccb get timestamp() 41
ccb get timing cnf() 31
ccb hms of timestamp() 43
ccb integ msg callback() 67
ccb integ per interval() 39
ccb integration duration() 38
ccb integration time() 39
ccb interval is zero() 37
ccb log msg callback() 69
ccb log server msg() 90
ccb monitor msg callback() 67
ccb ping echos() 62
ccb queue dump scan cmd() 58

ccb queue integ msg() 89
ccb queue load driver cmd() 59
ccb queue logger cmd() 61
ccb queue monitor cmd() 60
ccb queue monitor msg() 89
ccb queue ping cmd() 61
ccb queue reboot cmd() 63
ccb queue reset cmd() 61
ccb queue shutdown cmd() 63
ccb queue start scan cmd() 56
ccb queue status request cmd() . . . 62
ccb queue stop scan cmd() 57
ccb queue telemetry cmd() 60
ccb scale interval() 35
ccb scan duration() 39
ccb server event loop() 88
ccb set cal diode cnf() 27
ccb set config() 23
ccb set phase switch cnf() 24
ccb set sampler cnf() 32
ccb set timing cnf() 29
ccb settling time() 37
ccb status reply callback() 64
ccb subtract intervals() 36
ccb time to timestamp() 42
ccb time until() 42
ccb zero interval() 36
del CCBClientLink() 49
del CCBConfig() 22
del CCBServerDriver() 87
del CCBServerLink() 88
new CCBClientLink() 47
new CCBConfig() 22
new CCBServerDriver() 81
new CCBServerLink() 80

Datatype index

120

CCBCalDiodeCmd 99
CCBCalDiodeCnf 28
CCBCalDiodes 27
CCBClientIOStatus 53
CCBClientLink 47
CCBClientSocketsFn 52
CCBCmdErrorFn 54
CCBCmdStatus 54
CCBCntrlCmdAck 104
CCBCntrlPingReply 104
CCBConfig 22
CCBConfigType 23
CCBControlCommand 98
CCBControlCommandHeader 97
CCBControlCommandType 97
CCBControlReply 103
CCBControlReplyType 103
CCBDriverCheckEventsFn 86
CCBDriverCmd 83
CCBDriverCmdID 83
CCBDriverLoadFn 81
CCBDriverSelectEventsFn 85
CCBDriverTellFn 82
CCBDriverType 59
CCBDriverUnloadFn 82
CCBDrvConfScan 83
CCBDrvIntraScan 85
CCBDrvStageScan 84
CCBDumpScanCmd 100
CCBGeneralStatus 64
CCBIntegFlags 68
CCBIntegMsg 106
CCBIntegMsgFn 68
CCBInterval 35
CCBLinkType 62
CCBLoadDriverCmd 103
CCBLoggerCmd 101
CCBLogLevel 70
CCBLogMsg 106
CCBLogMsgFn 69
CCBMonitorCmd 101
CCBMonitorMsg 106
CCBMonitorMsgFn 67
CCBNetMsg 93
CCBNetMsgInfo 95

CCBNetMsgMember 94
CCBPhaseSwitchCmd 98
CCBPhaseSwitchCnf 26
CCBPingCmd 102
CCBRebootCmd 102
CCBRebootRTCFn 87
CCBResetCmd 101
CCBSampleType 32
CCBSamplerCmd 99
CCBServerDriver 81
CCBServerLink 80
CCBShutdownCmd 102
CCBShutdownRTCFn 87
CCBStartScanCmd 100
CCBStatusReply 104
CCBStatusReplyFn 64
CCBStatusRequestCmd 102
CCBStopScanCmd 100
CCBTelemetryCmd 101
CCBTelemetryHeader 105
CCBTelemetryStream 60
CCBTelemetryType 105
CCBTelemPingReply 107
CCBTimeStamp 40
CCBTimingCmd 99
CCBTimingCnf 31

Macro index
CCB BASE LOGID 90
CCB CLIENT SOCKETS FN 52
CCB CMD ERROR FN 54
CCB CONTROL PORT 11
CCB DRIVER CHECK EVENTS FN . 86
CCB DRIVER LOAD FN 81
CCB DRIVER SELECT EVENTS FN . 85
CCB DRIVER TELL FN 82
CCB DRIVER UNLOAD FN 82
CCB DUMP ALL FRAMES 59
CCB DUMP MAX SAMPLES 59
CCB INTEG MSG FN 68
CCB LOG MSG FN 69
CCB LOG PURGE DT 66
CCB LOGID 90
CCB MAX INTEG 106

121

CCB MAX LOG 106
CCB MAX LOG VARIANTS 66
CCB MAX MONITOR 106
CCB MAX NCAL 27
CCB MIN SAMP PER STATE 26
CCB MONITOR MSG FN 67
CCB NUM ADC 59
CCB REBOOT RTC FN 87
CCB SHUTDOWN RTC FN 87
CCB STATUS REPLY FN 64
CCB TELEMETRY PORT 12

122

