The hardware device-driver interface of the CCB

Martin Shepherd, California Institute of Technology

November 27, 2002



This page intentionally left blank.



Abstract

This document details the requirements of the PCI based interface between the
FPGA and the Linux device driver used by the Caltech Continuum Backend (CCB).

Contents
1 A definition of terms

2 Data-type conventions
2.1 Integer parameters

2.2 Boolean parameters

3 The PCI interface between the computer and the FPGA

3.1 Per scan configuration registers . . . . .. ... ... L oL

3.1.1 Detailed descriptions . . . . . . ... ... Lo

3.2 Per integration-period configuration registers . . . . . . . . .. .. ... ...

3.2.1 Detailed descriptions . . . . . . . ... ...

3.3 Control register . .

3.3.1 Detailed descriptions . . . . . . . ... ...

3.4 Diagnostic monitoring registers . . . . . . .. ... Lo
3.4.1 Detailed descriptions . . . . . . ... Lo
3.5 Data output via DMA . . . . . . . .. ...

3.6 Interrupts . .. ..

3.6.1 Detailed descriptions . . . . . . ... Lo

3.7 Interrupt registers .

3.7.1 Detailed descriptions . . . . .. ...

4 State diagrams

List of Figures

1 The life cycle of a scan in the hardware . . . . . . . .. ... ... ... ...

o J 3 3 ot ot O\



1 A definition of terms

The following terms are used throughout this document. It is recommended that in other
documents that describe both the hardware and software, these terms be prefixed with the
word hardware when referring to the FPGA.

e A sample
A single A/D sample.

e A measurement
The group of samples added within a single phase-switch state of a single cycle.

e A cycle
A single phase-switch cycle is composed of between 1 and 32 samples, with each sample
individually programmable to have 1 of 4 possible phase switch states.

e integration period
The integer number of cycles during which each integration is accumulated before being
passed to the device driver.

e An integration
The data accumulated for a single phase switch state during an integration period.

e A scan
A group of one or more integrations associated with a single set of scan-specific con-
figuration parameters.

2 Data-type conventions

2.1 Integer parameters

Integer valued parameters presented over the PCI bus will be unsigned and stored in little-
endian byte order.

2.2 Boolean parameters

Boolean registers presented over the PCI bus will be represented by single bits in a larger
data-type. The ordering of the bits within these data-types is defined such that performing
a logical shift right by 1 bit, results in the successively next least significant bit appearing
on the carry line of the shift register. The meanings of the values of these bits are as follows:

4



Boolean false | true

Switch state | off on

Note that when referring to phase-switches, off corresponds to when the phase-shifter isn’t
inserting any phase-shift into the signal path, and on means that it is inserting a 180° phase

shift.

3 The PCI interface between the computer and the
FPGA

3.1 Per scan configuration registers

The following registers can be written at any time, but their contents must be ignored by
the FPGA until the next “start scan” command is received.

Description Qty | Units | Default | Range
Sample interval 1 0.1us 250 1-65535
Samples per cycle 1 | 1 sample 1 1-32
The state of phase switch A 32 | boolean 0 Oorl
The state of phase switch B 32 | boolean 0 Oorl
Phase switch update flag 32 | boolean 0 Oor1l
Integration period 1 1 cycle 40 1-65535
Phase-switch blanking interval 1 0.1us 0 1-255
Integrator-reset blanking interval | 1 0.1us 0 1-255
Calibration diode settling time 1 0.1us 0 1-232 — 1

3.1.1 Detailed descriptions

e Sample interval

This sets the time taken per A/D sample. Although this is configurable, the analog
electronics preceding the ADC will be designed for a sampling interval of 25us, so
longer intervals will likely result in the A/D saturating, and much shorter intervals
may result in incomplete phase-switching.

Note that this interval must always be greater than the sum of the blanking intervals,
since this interval subtracts from the start of the sample interval. It is the responsibility
of the device driver to enforce this.

e Samples per cycle



The states of the phase-switch within each stage of the phase-switch cycle are con-
figured via a 32 stage state-machine, cycled every time a new sample is taken by the
A/D. This register specifies how many of these 32 states are actually to be used.

Note that while the direct specification of a 32-state state machine allows a great
deal of flexibility, in practice the states will be filled by the device driver from much
higher level configuration parameters, such as the number of samples per measure-
ment, the selection of one of 3 phase-switching modes (ie. no phase-switching, 1-diode
phase-switching, 2-diode phase-switching), and the specified initial states of the phase
switches at the start of each cycle.

The state of phase switch A

Each bit of this register specifies the state of phase-switch A of both radiometers at one
stage of the phase-switching state machine. This is designed to be loaded into a 32-bit
shift register at the start of each phase-switch cycle, then right shifted at the start of
each new sample, to determine the required state of the phase switches in that sample.
The number of shifts required to complete a cycle is determined by the “samples per
cycle” register described above. Note that the values in this register are only used to
drive the state of the phase switch when the corresponding “phase-switch update flag”
is set.

The state of phase switch B

This register is the equivalent of the “Phase switch A states” register for phase-switch
B, and is interpreted identically.

Phase switch update flag

This register is right shifted at the same time as the above two registers with each
successive bit and determines both when to instantiate the values in these registers
and when to include a phase-switch transition delay.

Integration period

This is the integer number of complete phase-switch cycles to integrate per phase switch
state before presenting the data to the computer. It was decided at the preliminary
design review that 1ms is the minimum integration time that needs to be supported. In
practice, shorter times may also be supported, depending on the speed of the computer
the bandwidth of the PCI bus, and the interface to Ygor.

Phase switch blanking interval

The sum of this interval and the integrator reset interval specify how long to stop
integrating after initiating a phase-switch transition. The choice of this number is
determined by the settling time of the phase switches. This interval is subtracted from
the beginning of just those sample intervals that follow phase-switch transitions.

Integrator reset blanking interval

This specifies how much time will be needed to reset the analogue integrators to zero.
The choice of this number is determined by the current-handling capacity of both the



capacitors and the FET switches that are used to discharge them, and is anticipated
to be around 0.5us. This interval is subtracted from the start of the A/D acquisition
time of all samples.

e Calibration diode settling time

The calibration diodes are switched at the start of integration periods only when the
“Cal diode states” configuration register contains values that differ from the current
cal-diode states. Whenever this happens, the state machine should command the new
cal-diode switch states, then discard the number of A/D samples specified by this
register, before starting the first cycle of the next integration period.

Note that the 32-bit range of this register is bigger than that of any other timer. This
is due to uncertainties over how long the diodes will actually take to settle to a level
suitable for astronomical measurements, versus what the manufacturer claims.

3.2 Per integration-period configuration registers

The following registers are re-examined at the start of each new integration period, at which
point they are copied into the internal working registers that affect the operation of the
hardware.

Description Qty | Units | Default | Range
Cal diode states 2 | boolean 0 Oor1l
Cal diode update flag | 1 | boolean 0 Oor1l

3.2.1 Detailed descriptions

e Cal diode states

The 2 least-significant bits of this register specify the states that the noise diodes should
be set to at the start of the next integration period, if the cal-diode-update flag is set.
A value of 1 means turn the diode on; a value of 0 means turn it off.

e Cal diode update flag

This tells the hardware both whether to update the cal-diode states to match the
current values in the above cal-diode-states register, and whether to accomodate this
with a delay equal to the duration specified by the cal-diode-settling-time register.

3.3 Control register

This register is a 32-bit register who’s individual bits set flags in the hardware. The first
thing that the FPGA must do after its program is loaded from EPROM, is to zero the bits



in this register. It should then wait for the driver to set the enable-interrupts bit in this
register before starting its state machine. This allows the driver to initialize the remaining
registers to default values before the first scan starts.

Bit Description Effect

0 Start scan Start a new scan at the end of the current sample

1 Stop scan Start a new scan at the end of the current integration
2 Reload FPGA Immediately reload the FPGA program from EPROM
3 Enable interrupts Enable 1-PPS and integration interrupts

4 Drive phase-switch A | Drive phase-switch A’s control line

5 Drive phase-switch B | Drive phase-switch B’s control line

6 Drive cal-diode A | Drive cal-diode A’s control line

7 Drive cal-diode B Drive cal-diode B’s control line

The operations listed in the above table are all asserted by setting the corresponding bits to
1. The response of the hardware to each of these bits is detailed below.

3.3.1 Detailed descriptions

Start scan

When the current ADC sample has completed, wait for the next rising edge of the
1-PPS signal, then read the current values of the per-scan and per-integration config-
uration registers into internal configuration registers, issue an integration interrupt to
tell the driver that it should now send the integration parameters for the 2nd integra-
tion of the scan, then start the first integration of the scan.

This will be used by the driver as follows. On receiving a start-scan command from
the manager, the driver will wait for the next integration interrupt. On receiving this
interrupt, it will write both the configuration parameters of the new scan and those
of the first integration of the new scan to the corresponding hardware configuration
registers. It won’t bother reading the latest integrations on receiving this interrupt,
and will continue to discard future integrations until the new scan starts. Next, if the
start-scan request from the manager was received more than a second in advance of
the particular 1-PPS time that the manager says that it wants the scan to start on, the
driver will first wait for the 1-second tick that precedes the desired one. Then it will
send a start-scan command to the hardware, to be executed on the next 1-PPS. The
hardware will see the start-scan request on finishing the current sample interval, and
then start waiting for the receipt of the next 1-PPS. When this 1-PPS signal arrives, the
hardware will copy the new per-scan and per-integration parameters into its internal
working registers, send an integration interrupt to tell the driver to send the integration
parameters for the 2nd integration of the scan, then start the first integration. At the
same time, when the driver receives the 1-PPS interrupt that signifies the start of the
scan, it will reenable the reading of integrations.



e Stop scan

When the current integration has completed, read the current values of the per-scan
and per-integration configuration registers into internal working registers, send an in-
tegration interrupt to tell the driver to write the configuration parameters of the 2nd
integration of the scan, then start the first integration of the scan.

Note that unlike the start-scan command, the start of a new scan by this command
is not synchronized with the 1-PPS signal. This is because scans started by this
command are only used for monitoring, which have no need for time synchronization.
Furthermore, since in general users will be using this command for quick experiments
with new scan-parameters (via a GUI), they won’t want to have to wait for a full
second to see the results of each experiment.

e Reload FGPA

This command will be issued by the driver at startup, and can also be used during
initial debugging to reload the FPGA program from EPROM after a crash. After a
reload, the configuration parameters should all be set to the defaults listed in the above
register tables, and the first of a new scan of integration periods should be initiated
using these values.

e Enable interrupts

At startup, 1-PPS and integration interrupts will be disabled. This command is used
to enable them once the driver is in a fit state to respond to them. Subsequently setting
it to zero should simply stop interrupts being generated, without affecting the rest of
the state machine.

e Drive phase-switch A

This turns on the output control line which drives phase-switch A. Note that turning
this off must not disable the part of the phase-switching state machine which controls
phase-switch A. It must continue to switch as though output was on.

The purpose of this register and the next three registers is both to allow the same
backend to be used with instruments with differing number of phase switches and to
allow other backends to take control of the frontend without interference from ours.

e Drive phase-switch B
This is the equivalent of the “drive phase-switch A” register for phase switch B.

e Drive cal-diode A

This turns on the output control line which drives calibration diode A. Note that the
state machine which controls the signal going to this output must continue to function
irrespective of whether the output control line is on or off.

e Drive cal-diode B

This is the equivalent of the “drive cal-diode A” register for calibration diode B.



3.4 Diagnostic monitoring registers

These registers, which will be stored in PCI DMA memory, must be updated by the hardware
just before the integration interrupt is sent. The device driver must therefore read them out
on receipt of this interrupt. In order not to hold up the start of the next integration,
the hardware must initiate measurements of these values sufficiently far advance of the
end of the integration that the resulting values can simply be copied from internal cache
registers to DMA memory at the end of each integration. To ensure this, the flow diagram
at the end of this document initiates new measurements just before starting the first scan
of each integration. The A/D converters and associated readout circuits thus have a whole
integration period (ie. on the order of around 1ms) to measure and cache new values.

Description Qty Units Range
Power supply voltages | N/A mv N/A
A/D converter outputs | 16 | A/D sample | 0---23% —1

The ordering of the array of 16 A/D converter outputs will be as follows.

| Array Index [0 [ 1|2 [3[4]5]|6[7[8]910[11[12[13[14[15 |
Detector L[2]1]2]1]2]1]2]1]2]1[2]1]2]1]2
Band 1. ]2 3. J4...[1...]2..... 3..... 4.....
Radiometer | 1........................ /P

3.4.1 Detailed descriptions

e Power supply voltage

This will record the voltages of all power supplies in the system.

e A/D converter outputs

The last values read from the 16 A/D converters. This will mainly be used to check
for failing A/D converters and A /D saturation.

3.5 Data output via DMA

PCI direct memory access (DMA) will be used to transfer integrations to the CPU. These
locations should be updated by the FPGA at the end of each new integration, before gen-
erating the integration interrupt. The driver will read them ASAP when the interrupt is
received.

10



Description Qty | Units Range
An integrated data value | 64 — 0---23%2 -1
Overflow mask 64 | boolean Oor1l

The overflow mask uses 64 bits of a double-word aligned array of 8 bytes to record which of
the 64 data values suffered overflows during integration. Bits will be numbered starting at
zero with the least significant bit of the highest memory location, and ending at 63 with the
most significant bit of the lowest memory location.

The array of integrations will be treated as an array of double-word aligned values, numbered,
starting at zero, with the element with the lowest memory location.

The order of assignment of the 64 values and their corresponding overflow bits to array
indexes and bit indexes will be as follows.

| Array index [0 [1]2[3[4[5|6|7[8[9[10[11[12]13]14]15[16 17

Integration |[1[2[3[4[1[2]3[4|1|2|3 |41 [2[3[4]1]2
Detector I 2. . Lo [ 20 1.....
Band 1o 2 3.....
Radiometer | 1 .. ...

3.6 Interrupts

The following interrupts will share a single interrupt line.

Description

When to send the interrupt

Integration interrupt
1-PPS interrupt

Just before reading the per-integration configuration registers
On the rising edges of the 1-PPS signal

3.6.1 Detailed descriptions

e Integration interrupt

This interrupt serves two purposes.

1. Except for the first interrupt of a scan, it tells the driver that the results of the
last integration period have just been written to the DMA memory area, and that
the driver should be read them ASAP.

2. It also tells the driver that the PCI per-integration configuration registers for
the integration that is now being started, have been safely copied into internal
working registers, and that the driver should now overwrite these PCI registers
with the configuration of the integration that will follow this one.

11



Note that because integration configuration parameters are loaded one integration
period in advance, the driver will be expected to update these parameters at the start
of a new scan, so when the scan is starting, the FPGA must send an integration
interrupt after reading these parameters but before having done a single integration,
so that the driver is told when to send the parameters for the second integration of
the scan. See the state machine diagram at the end of this document to see how this
comes for free with judicious ordering of states.

In more detail, at the end of each integration period the integrations, overflow registers
and monitoring data should be transfered to the DMA memory area. Next the per-
integration configuration options of the integration that is about to be started, should
be loaded from the PCI registers into internal working registers. Next the integration
interrupt-sent register should be set to 1, and finally an interrupt should be generated
to tell the device driver to read-out the data and update the integration configuration
parameters for the integration that follows the one that is being started.

Note the importance of sending the interrupt after reading the integration configuration
registers, to avoid a race condition between the driver and the hardware.
e 1-PPS interrupt

Whenever a rising edge of the 1-PPS signal is seen, the 1-PPS interrupt-sent register
should be set to 1, and an interrupt should be generated to tell the device driver to
synchronize its clock.

3.7 Interrupt registers

Description Function ’
Integration interrupt-sent | Tells the driver that an integration interrupt was sent
1-PPS interrupt-sent Tells the driver that a 1-PPS interrupt was sent

3.7.1 Detailed descriptions

e Integration interrupt-sent

Whenever an integration interrupt is generated, this register must be set to non-zero.
The device-driver’s interrupt handler will reset it to zero. The function of this register
is both to provide a way to identify and ignore false interrupts, and also a way, in com-
bination with the 1-PPS interrupt-sent register, to allow sharing of a single interrupt
line.

e 1-PPS interrupt-sent

Whenever a 1-PPS interrupt is generated, this register must be set to non-zero. It will
be reset to zero by the device-driver’s interrupt handler.

12



4 State diagrams

The following flow diagrams illustrate the textual specification written above. They indicate
how the hardware must appear to behave, as seen at the device-driver and receiver interfaces.
The designer of the FPGA is of course free to implement it as he sees fit, provided that the
result acts like a black box who’s external interfaces mimic this behavior. The need for
such a rigorous specification at this point is dictated by the involvement of multiple groups,
all needing to design to a single consistent set of interfaces. Presenting such a detailed
specification also facilitates the removal of bugs and the resolution of misunderstandings
in the intended behavior before any hardware or software is designed. To be useful for
this purpose, it is essential that this specification remain as static as possible, so once all
parties have agreed to this specification, it will be frozen, and thereafter, changes to it will
be discouraged and require formal justification, agreed upon by all parties. Without such
agreement, any departures from this specification, or any failures of the device driver or
receiver to work within the constraints of this behavior, will be considered as flaws to be
fixed by their respective implementors.

Note that in terms of operation ordering and timing, the diagrams are more rigorous than
the explanatory text in the rest of this document, and for this purpose the diagrams should
be taken as the primary reference. External data representations on the other hand, are
described more rigorously in the text.

13



J Clear the

+ Await the next N Set the interrupt- N Generate a 1-PPS
Zero the control 1-PPS rising edge | | sent PCI register PCI interrupt ’7 stop-scan <&
flag
register
Get‘ working Gejt working ‘ Zero t1_1e Assert the Generate an
W ait for the v copies of the % copies of- the integration integration integration
interrupt-enable A> scan- mtegratlop- = and overﬂf)w - interrupt-sent interrupt
control-flag configuration configuration | |accumulation register
registers registers registers Y
\
Wait for Copy the integration Copy the 16 cached Is the
all of the and overflow ADC outputs and stop-scan flag
integration —» accumulation [ all other cached 6 asserted? Yes
adders registers to DMA monitor data to Update the
to finish memory DMA memory cal diode
states
Tell all diagnostic V Is the
Cycle Decrement the monitoring circuits Wait one cal-diode-
counter cycle - to start measuring cal d1‘0de Y update flag
26107 counter new values, and settling es
cache the results mte‘rv al
Load the 3 Start the sample Load the cycle
Sample time-sequences Load the sample clock with a rising counter with the
< counter of phase-switch | counter with the | _y edge and a period ¥ value of
zero? control flags into value of D of 1 sample integration_period
3 shift registers | | samples_per_cycle
Decrement Right shif? Assert. the Is the- Yes
the sample- start-scan flag the [‘)hase-‘swnch | reset lines phase-switch-
counter by 1 shift reglst'ers ‘ of the update flag T
by one bit integrators set?
. Update the
Await the Clear the phase-switch
L next 1-PPS | start-scan No states
rising edge flag *
Tell the ADCs Wait for the Clear the reset lines Delay for one —l Delay for one
| | toacquire the | . | nextrising edge | | of the integrators,| | integrator-reset | _ phase-switch
analog integrator of the sample so that they blanking blanking
ouiputs clock start integrating interval interval
Read-out Using the carry bits Use a 16-bit Add the value to the
Wait for the ADC of the shift registers shift register 32-bit integration
ADC to report serially as a 2-bit address, N to convert the N register. Record any
that it is ready route the ADC serial serial overflow in 1 of 64
to be read out. | |Cache ADC output | | output to 1 of 4 adder ADC output bits of the 2x32-bit
for monitoring circuits to parallel overflow registers.
The above enclosed steps should be repeated in parallel for each of the 16 detectors

Figure 1: The life cycle of a scan in the hardware

14



