
The communications interface between the Ygor

manager and the CCB server.

Martin Shepherd, California Institute of Technology

January 10, 2003

1

This page intentionally left blank.

2

Abstract

This document documents the communications interface between the Ygor manager
process and the Linux server of the Caltech Continuum Backend (CCB).

Contents

1 Connection establishment 5

1.1 Connection authentication . 5

1.2 Protocol authentication . 5

1.2.1 Program vs library consistency check 6

1.2.2 Server vs client consistency check . 6

1.3 Telemetry connection establishment . 6

1.4 Initial configuration . 6

2 The CCB control link 7

2.1 CCBControlCmdHeader – The common header of all control command messages 7

2.2 CCBControlReplyHeader – The common header of all control reply messages . 8

2.3 CCB configuration commands . 9

2.3.1 CCBPhaseSwitchCnf – The phase-switching configuration command . 9

2.3.2 CCBCalDiodeCnf – The calibration diode configuration command . . . 12

2.3.3 CCBTelemetryCnf – The telemetry configuration command 13

2.3.4 CCBTimingCnf – The acquisition-timing configuration command . . . 14

2.4 CCB control commands . 15

2.4.1 CCBStartScanCmd – The start-scan command 15

2.4.2 CCBStopScanCmd – The stop-scan command 16

2.4.3 CCBResetCmd – The reset command 17

2.4.4 CCBStandbyCmd – The standby command 17

2.4.5 CCBAwakenCmd – The awaken command 18

2.4.6 CCBTestLinkCmd – The test-link command 18

2.4.7 CCBCheckStatusCmd – The check-status command 19

2.4.8 CCBShutdownCmd – The shutdown command 19

2.4.9 CCBRebootCmd – The reboot command 20

2.5 Replies to CCB control commands . 20

2.5.1 CCBCmdLinkReply – A reply to a test-link command 20

3

2.5.2 CCBStatusReply – A reply to a check-status command 20

3 The CCB telemetry link 21

3.1 CCBTelemetryHeader – The common header of all telemetry messages 22

3.2 CCBIntegData – Integration data messages 23

3.3 CCBMonitorData – Monitor data messages 24

3.4 CCBLogData – CCB log messages . 24

3.5 CCBTelemLinkReply – A reply to a test-link command 25

List of Figures

1 Example phase-switching cycles . 10

4

1 Connection establishment

The CCB server process has two TCP/IP ports, one for synchronous control transactions,
and one for asynchronous data delivery.

The manager starts by attempting to connect to the control port of the CCB server, us-
ing a TCP/IP port number which is defined in a shared C header file, via the C macro
CCB CONTROL PORT.

1.1 Connection authentication

For security reasons, the run-time configuration file of the CCB server includes a list of the
numeric IP addresses of the computers that are allowed to connect to the CCB server. An
asterisk in place of any of the numeric components of these addresses, acts as a wild-card,
thus simplifying the process of authorizing access to all computers within a given domain or
sub-domain.

If the connecting manager isn’t connecting from one of the authorized IP addresses, or a
new connection is attempted while a manager is already connected to the CCB server, the
new connection is rejected. In the case of a manager already being connected, the rejected
connection request is logged via the existing manager.

1.2 Protocol authentication

Although the server and the manager use a common communications library and common
message-definition files, there is potential for these files to get out of sync between the two
systems. In fact there are potentially 4 separate components that could become out of sync,
each one having been compiled against a different version of the public header file which
defines the message structures that are exchanged with the communications library. These
are the manager process, the server process and, if the communications library is made
into a shared library, the two copies of this shared library on the two systems. It is vitally
important that failure to recompile any of these components to accomodate a revised version
of the messaging structures, be detected by the combined system, the moment that anybody
attempts to use it.

Rather than have a manually maintained version number, the way that this is done in the
CCB communications library is to have the library makefile compute a CRC-32 checksum
of the its public C header file, and record this number as a macro assignment at the top of
the exported copy of this header file. This is done as follows.

$(INCLUDE)/ccbnetcoms.h: ccbnetcoms.h

5

echo "CCB_HEADER_CKSUM ‘cksum ccbnetcoms.h | awk ’{print $1}’‘" > $@

cat ccbnetcoms.h >> $@

This checksum can then be interchanged between the 4 components to check that they were
all compiled against the same version of the public header file.

1.2.1 Program vs library consistency check

The server checks that it is compiled against a compatible version of the library by comparing
its copy of the checksum with that returned by the library function, ccb library cksum(). If
the comparison indicates a problem, the CCB server aborts. The manager follows the same
procedure to verify compatibility with its copy of the library.

1.2.2 Server vs client consistency check

As soon as a successful connection has been established by the manager to the CCB server,
the CCB manager is required to pass its copy of the header-file checksum to the CCB server
in a 32-bit network-byte order unsigned integer. If this number doesn’t match the CCB
server’s copy of the checksum, the CCB server closes the TCP/IP connection, to reject it.
Otherwise the CCB server responds by sending a CCBConnectionAckmessage to the manager.
This tells the manager that the control connection has been accepted.

1.3 Telemetry connection establishment

Once a control connection to the CCB server has been accepted by the server, the CCB server
expects the manager to also connect to its telemetry server port, whose number is provided in
a C macro called CCB TELEMETRY PORT. This is a separate TCP/IP port, which is used by
the CCB server to send asynchronous messages, such as the integration data, monitoring data
and log messages, to the manager. Only telemetry connection whose originating IP addresses
match that of the manager’s control connection, are accepted. Telemetry connections are
closed automatically by the CCB server when the manager closes its control connection.

1.4 Initial configuration

Once a new manager/server communications connection has been established, the CCB
server waits in standby mode. This allows the manager to override the server’s default
configuration parameters with its own, before sending an “on” command, to awaken the
CCB.

6

2 The CCB control link

This section describes the messages that are sent to the control port of the CCB server.

Note that the structures described in this section are only used to pass these messages to
and from the communications library, and don’t denote the form in which data are sent via
TCP/IP. That will be described later.

2.1 CCBControlCmdHeader – The common header of all control com-
mand messages

All outgoing control messages, start with an initial CCBControlCmdHeader member. This is
defined as follows.

typedef struct {

CCBControlCmdType type; /* The type of control message */

} CCBControlCmdHeader;

The members of this structure are interpreted as follows.

• Message type (CCBControlCmdHeader::type)

This member identifies the type of control message encoded in the parent structure.
This is expressed using an enumeration of the following type.

typedef enum {

CCB_PHASE_SWITCH_CNF, /* A phase-switch config command */

CCB_CAL_DIODE_CNF, /* A cal-diode config command */

CCB_TELEMETRY_CNF, /* A telemetry config command */

CCB_TIMING_CNF, /* An timing config command */

CCB_START_SCAN_CMD, /* A start-scan command */

CCB_STOP_SCAN_CMD, /* A stop-scan command */

CCB_RESET_CMD, /* A reset command */

CCB_AWAKEN_CMD, /* An awaken command */

CCB_STANDBY_CMD, /* A standby command */

CCB_TEST_LINK_CMD, /* a test-link command */

CCB_CHECK_STATUS_CMD, /* a check-status command */

CCB_SHUTDOWN_CMD, /* A computer shutdown command */

CCB_REBOOT_CMD, /* A computer reboot command */

/* The following enumerator must be the last */

CCB_NCMD /* The number of commands */

7

/* listed above. */

} CCBControlCmdType;

Since all control message structures share the same initial header structure, a pointer to
the following union of all message types can portably be used to pass messages of any type
to and from functions of the communications library, with the header member of the union
being used to determine what type of message is actually being passed.

typedef union {

CCBControlCmdHeader header; /* The shared control header */

CCBPhaseSwitchCnf phase_cnf; /* header.type == CCB_PHASE_SWITCH_CNF */

CCBCalDiodeCnf diode_cnf; /* header.type == CCB_CAL_DIODE_CNF */

CCBTelemetryCnf telem_cnf; /* header.type == CCB_TELEMETRY_CNF */

CCBTimingCnf timing_cnf; /* header.type == CCB_TIMING_CNF */

CCBStartScanCmd start_scan; /* header.type == CCB_START_SCAN_CMD */

CCBStopScanCmd stop_scan; /* header.type == CCB_STOP_SCAN_CMD */

CCBResetCmd reset; /* header.type == CCB_RESET_CMD */

CCBAwakenCmd awaken; /* header.type == CCB_AWAKEN_CMD */

CCBStandbyCmd standby; /* header.type == CCB_STANDBY_CMD */

CCBTestLinkCmd test_link, /* header.type == CCB_TEST_LINK_CMD */

CCBCheckStatusCmd chk_status, /* header.type == CCB_CHECK_STATUS_CMD */

CCBShutdownCmd shutdown; /* header.type == CCB_SHUTDOWN_CMD */

CCBRebootCmd reboot; /* header.type == CCB_REBOOT_CMD */

} CCBControlMessage;

2.2 CCBControlReplyHeader – The common header of all control reply
messages

All incoming control replies, start with an initial CCBControlReplyHeader member. This is
defined as follows.

typedef struct {

CCBControlReplyType type; /* The type of control-reply message */

} CCBControlReplyHeader;

The members of this structure are interpreted as follows.

• Reply type (CCBControlReplyHeader::type)

This member identifies the type of control message encoded in the parent structure.
This is expressed using an enumeration of the following type.

8

typedef enum {

CCB_CMD_LINK_REPLY, /* A test-link reply */

CCB_STATUS_REPLY, /* A check-status reply */

} CCBControlReplyType;

Since all control-reply message structures share the same initial header structure, a pointer
to the following union of all message types can portably be used to pass control-replies of
any type to and from functions of the communications library, with the header member of
the union being used to determine what type of reply is actually being passed.

typedef union {

CCBControlReplyHeader header; /* The shared control header */

CCBCmdLinkReply cmd_link; /* header.type == CCB_CMD_LINK_REPLY */

CCBStatusReply status, /* header.type == CCB_STATUS_REPLY */

} CCBControlReplyMessage;

2.3 CCB configuration commands

This sub-section describes the subset of control messages that configure the parameters of
the next scan. The modified configuration doesn’t take affect until the next start-scan or
stop-scan message is sent.

2.3.1 CCBPhaseSwitchCnf – The phase-switching configuration command

The digital backend generates two phase-switch TTL control signals, both of which are used
by the 1cm receiver, and only one of which is used by the 3mm receiver. The CCB server
supports the 16 phase-switching modes illustrated in figure 1.

In this diagram the supported cycles are arranged into columns of cycles of the same initial
switch states, and rows of cycles with a particular combination of active switches. Note that
whereas the number of A/D samples per measurement is just an example of what can be
configured, the number of measurements per cycle is fixed by the number of switches that
are active, and is thus not otherwise configurable. In addition to the parameters illustrated,
it is also be possible to individually switch off each of the TTL outputs, regardless of whether
those outputs are configured to be switching or not. This potentially reduces interference
while other backends are controlling the phase switches.

Phase-switching configuration parameters are passed to and from the communications library
using structures of the following type.

9

Figure 1: Example phase-switching cycles

10

typedef struct {

CCBControlCmdHeader header; /* The control-message header */

unsigned short active_switches; /* Which switches are active? */

unsigned short driven_switches; /* Which switches are driven? */

unsigned short initial_states; /* Which switches start closed? */

unsigned short samp_per_state; /* Samples per phase-switch state */

} CCBPhaseSwitchCnf;

The members of this structure are interpreted as follows.

• Which switches are active? (CCBPhaseSwitchCnf::active switches)

The two least-significant bits of this integer control which of the two phase switches
should be switched, and which should be held in the phase-switch states specified
by the CCBPhaseSwitchCnf::initial states parameter. A value of 0 indicates that the
corresponding switch should be held in its initial position, whereas a value of 1 indicates
that it should be switched according to the current switching mode.

• Which switches are driven? (CCBPhaseSwitchCnf::driven switches)

The 2 least significant bits of this parameter control which of the 2 phase-switch control
lines are driven. When they aren’t being driven, other backends can control the phase
switches. A value of 1 causes the corresponding line to be driven. A value of zero
causes it to be placed in a high impedance state.

• Which switches start closed? (CCBPhaseSwitchCnf::initial states)

The 2 least significant bits of this parameter specify the states that the 2 phase switches
must have at the start of each new phase-switch cycle. Switches that aren’t configured
to be switching by the CCBPhaseSwitchCnf::active switches parameter are held in these
states throughout each cycle.

• Samples per phase-switch state (CCBPhaseSwitchCnf::samp per state)

This parameter configures the number of A/D samples that are integrated between
changes in the states of either phase-switch. Since the underlying state machine for
each cycle is clocked by the sample clock, and there is room for 32 states per cycle, the
product of the number of samples per measurement and the number of measurements
per cycle sets an upper limit on the value of this parameter as follows:

Number of enabled Maximum number of
phase-switches samples per measurement

0 32
1 16
2 8

11

2.3.2 CCBCalDiodeCnf – The calibration diode configuration command

The digital backend generates two noise-diode TTL control signals, both of which are used
by the 1cm receiver, and only one of which is used by the 3mm receiver. Since the device
driver sets the on/off state of these diodes at the boundaries between integrations, each
cal-diode state lasts an integral number of integrations. For each scan it is thus necessary
to specify the sequence of states that the noise-diodes should go through, and how many
integrations each state should last. This sequence starts with the first integration of the
scan, and thereafter is repeated indefinitely until the next scan is started. Since it isn’t clear
how many calibration steps might be needed for future observations, the maximum number
of steps is parameterized as CCB MAX NCAL.

Calibration diode configuration parameters are passed to and from the communications
library using structures of the following type.

enum {CCB_MAX_NCAL=?}; /* The max number of cal steps */

typedef struct {

CCBControlCmdHeader header; /* The control-message header */

unsigned short ncal; /* The number of cal steps */

unsigned short driven_diodes; /* The set of driven cal diodes */

unsigned short diode_a[CCB_MAX_NCAL]; /* The ncal states of diode A */

unsigned short diode_b[CCB_MAX_NCAL]; /* The ncal states of diode A */

unsigned long ninteg[CCB_MAX_NCAL]; /* The duration of each step, */

/* (number of integrations) */

} CCBCalDiodeCnf;

The members of this structure are interpreted as follows.

• The number of calibration steps (CCBCalDiodeCnf::ncal)

The number of steps in the calibration diode state machine. This must be less than or
equal to CCB MAX NCAL.

• The set of driven cal-diodes (CCBCalDiodeCnf::driven diodes)

The 2 least significant bits of this parameter specifies which of the two calibration diode
control lines are to be driven. A value of 1 means that the corresponding line should
be driven, whereas a value of 0 means that it should be placed in a high impedance
state.

• The CCBCalDiodeCnf::ncal states of diode A (CCBCalDiodeCnf::diode a)

The first CCBCalDiodeCnf::ncal elements of this array specify whether noise diode A
is to be on or off in the corresponding step of the calibration diode state machine. A
value of 0 means off, and a value of 1 means on.

12

• The CCBCalDiodeCnf::ncal states of diode B (CCBCalDiodeCnf::diode b)

The first CCBCalDiodeCnf::ncal elements of this array specify whether noise diode B
is to be on or off in the corresponding step of the calibration diode state machine. A
value of 0 means off, and a value of 1 means on.

• The duration of each calibration step (CCBCalDiodeCnf::ninteg)

Each of the first CCBCalDiodeCnf::ncal elements of this parameter specify for how many
integrations the state of the corresponding stage of the calibration diode state machine
should be maintained. With an integration time of 1ms, the use of a 32-bit value
translates to a maximum duration of 48 days. This is clearly overkill, but a 16-bit
value would only support up to 65 seconds per state, which might not be enough.

2.3.3 CCBTelemetryCnf – The telemetry configuration command

The telemetry configuration command specifies what types of data are to be sent to the
manager by the CCB server, and how frequently they should be sent. Commands of this
type are passed to and from the communications library, using structures of the following
type.

typedef struct {

CCBControlCmdHeader header; /* The control-message header */

unsigned short integ_period; /* The integration period */

unsigned short monitor_interval; /* The monitoring update interval */

unsigned short stream_selection; /* The set of desired data streams */

} CCBTelemetryCnf;

The members of this structure are interpreted as follows.

• The integration period (CCBTelemetryCnf::integ period)

This specifies the number of phase-switch cycles that are co-added to form the integra-
tions that are sent to the manager. The physical length of time that this corresponds to
depends on the length of an A/D sample and the number of samples per phase-switch
cycle.

• The monitoring update interval (CCBTelemetryCnf::monitor interval)

Instrumental monitoring data are sent to the manager with a period of this many
integrations.

• Data-stream selection (CCBTelemetryCnf::stream selection)

This parameter contains a bit-wise union of CCBTelemetryStream enumerators, used to
specify which, of the integration data stream and the monitor data stream, should be
forwarded to the manager, and which should be discarded.

13

typedef enum {

CCB_INTEG_STREAM=1, /* The stream of integrated data */

CCB_MONITOR_STREAM=2, /* The stream of monitoring data */

CCB_LOG_STREAM=4, /* The stream of log messages */

CCB_NO_STREAMS = 0, /* None of the above streams */

CCB_ALL_STREAMS /* All of the above streams */

= CCB_INTEG_STREAM |

CCB_MONITOR_STREAM |

CCB_LOG_STREAM

} CCBTelemetryStream;

Normally all streams are selected by the manager. However in standby mode, the
manager may wish to choose whether to completely ignore the backend, whether to
just select instrumental monitoring and log data, or whether to continue to receive all
data from the backend.

2.3.4 CCBTimingCnf – The acquisition-timing configuration command

The acquisition timing configuration specifies the durations of timers in the CCB hardware.
Timing configuration parameters are passed to and from the communications library using
structures of the following type.

typedef struct {

CCBControlCmdHeader header; /* The control-message header */

unsigned short sample_dt; /* The duration of an A/D sample */

unsigned short phase_switch_dt; /* The settling time of the phase */

/* switches. */

unsigned short analog_reset_dt; /* The amount of time needed to */

/* reset the analog integrators. */

unsigned long diode_rise_dt; /* The rise time of a cal diode */

unsigned long diode_fall_dt; /* The fall time of a cal diode */

} CCBTimingCnf;

The members of this structure are interpreted as follows.

• A/D sample interval (CCBTimingCnf::sample dt)

This refers to the amount of time taken per A/D sample, including the time used to
blank phase-switch transitions, but not including the time spent resetting the analog
integrators.

14

• Phase-switch blanking interval (CCBTimingCnf::phase switch dt)

This specifies how much of the sample interval is lost to waiting for the phase switches
to settle after phase-switch transitions.

• Integrator-reset blanking interval (CCBTimingCnf::analog reset dt)

This specifies how long to wait for the analog integrator to reset before starting to
integrate a new sample. This is expected to be around 1µs.

• Calibration diode rise time (CCBTimingCnf::diode rise dt)

This specifies the minimum time to wait before starting any integration that starts
with either of the calibration diodes being newly switched on.

• Calibration diode fall time (CCBTimingCnf::diode fall dt)

This specifies the minimum time to wait before starting any integration that starts
with either of the calibration diodes being newly switched off.

2.4 CCB control commands

The CCB control commands described in this section are acted on as soon as they are
received by the CCB server. A summary of the available commands is given in the following
table, along with the names by which they are referred to elsewhere in the text.

Name Description
start-scan Start a new scan at the end of the current integration
stop-scan Start a new scan at the end of the current sample
reset Re-initialize the hardware.
awaken Take control of the receiver.
standby Relinquish control of the receiver.
test-link Request a link-verification reply.
check-status Request a status reply.
shutdown Shutdown the real-time CPU.
reboot Reboot the real-time CPU.

The following subsections elaborate on these commands.

2.4.1 CCBStartScanCmd – The start-scan command

The start-scan command causes a new scan to be started on the 1-PPS boundary specified
by the CCBStartScanCmd::date and CCBStartScanCmd::tod parameters. If the command
is received less than 1 integration time before the specified time, the new scan is not be

15

started on the desired 1-PPS, but instead starts on the next 1-PPS that follows the current
integration.

The new scan adopts any changes to the configuration parameters that have been made since
the last start-scan or stop-scan command was received.

start-scan commands are exchanged with the communications library using structures of the
following type.

typedef struct {

CCBControlCmdHeader header; /* The control-message header */

unsigned long date; /* The MJD UTC day number */

unsigned long tod; /* The time of day (ms since 0H UTC) */

} CCBStartScanCmd;

The members of this structure are interpreted as follows.

• The date at which to start the scan (CCBStartScanCmd::date)

This is the date at which the scan should be started, expressed in UTC, as a Modified
Julian Day number. To be precise, this is the integer part of (Julian Date−2400000.5).

• The time-of-day at which to start the scan (CCBStartScanCmd::tod)

This is the time of day at which the scan should be started, specified as the integer
number of seconds after 0H UTC on the day indicated by CCBStartScanCmd::date. The
scan starts at the start of the specified second, provided that the command is received
at least one second in advance of this time.

2.4.2 CCBStopScanCmd – The stop-scan command

This operates like the start-scan command, except that on receipt by the server/device-driver,
a new scan is started as quickly as possible, rather than waiting for a specified 1-PPS. The
resulting truncated integration from the previous scan is discarded.

stop-scan commands are exchanged with the communications library using structures of the
following type.

typedef struct {

CCBControlCmdHeader header; /* The control-message header */

} CCBStopScanCmd;

16

2.4.3 CCBResetCmd – The reset command

This command resets both the hardware and the device driver.

On receiving this command, the device driver tells the FPGA to reload its firmware from
EPROM. The device driver then disconnects from the CCB server process. The CCB server
process reacts to this by unloading and reloading the device driver. The device driver
then proceeds to detect and re-initialize the hardware with its built-in default configuration
parameters. The server then re-opens its connection to the device driver, then sends the
reloaded driver the current configuration parameters and tells it to start a new scan.

reset commands are exchanged with the communications library using structures of the
following type.

typedef struct {

CCBControlCmdHeader header; /* The control-message header */

} CCBResetCmd;

2.4.4 CCBStandbyCmd – The standby command

On receiving this command, the CCB server tells the hardware to stop driving any of the
receiver control lines.

standby commands are exchanged with the communications library using structures of the
following type.

typedef struct {

CCBControlCmdHeader header; /* The control-message header */

unsigned short stream_mask; /* The telemetry selection mask */

} CCBStandbyCmd;

The members of this structure are interpreted as follows.

• The telemetry data-stream selection mask (CCBStandbyCmd::stream selection)

This parameter contains a bit-wise union of CCBTelemetryStream enumerators, specify-
ing which of the currently enabled telemetry streams should continue to be sent to the
manager. To determine this, the CCB server takes the union of the set of streams spec-
ified in this parameter with the set previously specified by the last CCBTelemetryCnf
command.

For example, if all currently enabled streams should continue to be sent, this parameter
should be specified as CCB ALL STREAMS, whereas if no streams should continue

17

be sent to the manager, it should be set to CCB NO STREAMS, and if all but the
integration data should continue to be sent, it should be set to
(CCB All STREAMS & ˜CCB INTEG STREAMS).

2.4.5 CCBAwakenCmd – The awaken command

On receiving this command the server tells the hardware to start driving any receiver control
lines that are currently configured to be driven, and to start sending subsequent integrations
to the manager. It also undoes the effect of the telemetry stream mask that was specified
by the preceding standby command.

Note that a new scan isn’t automatically be started by this command.

awaken commands are exchanged with the communications library using structures of the
following type.

typedef struct {

CCBControlCmdHeader header; /* The control-message header */

} CCBAwakenCmd;

2.4.6 CCBTestLinkCmd – The test-link command

On receiving this command the CCB server replies to the manager with a CCBCmdLinkReply
message over the command connection, and a CCBTelemLinkReplymessage over the telemetry
connection. This provides a means by which the manager can check if both the CCB server,
and its TCP/IP links are alive. The intention is that the following sequence of operations
be performed by the manager every few minutes.

1. The manager clears the two internal flags which it asserts whenever CCBTelemLinkReply
and CCBCmdLinkReply messages are received.

2. The manager then sends a test-link command to the CCB server.

3. Rather than waiting for a reply, the manager for-now simply arranges to be notified
when data arrives over the command and telemetry links, then goes back to doing
whatever it was doing.

4. When data arrives over either link, and on decoding the received message the manager
identifies a CCBCmdLinkReply or CCBTelemLinkReply message, the manager asserts the
corresponding internal flag to record this, then goes back to doing whatever it was
doing.

18

5. Just before the time at which the manager is due to send a new test-link command, it
checks that since the previous one was sent, both a CCBCmdLinkReply and a CCBTelem-
LinkReply have been received, by checking the corresponding internal flags. If not, this
denotes a problem either with one of the links, or with the CCB server, and the manager
should alert the operator.

6. The manager goes back to step 1.

test-link commands are exchanged with the communications library using structures of the
following type.

typedef struct {

CCBControlCmdHeader header; /* The control-message header */

} CCBTestLinkCmd;

2.4.7 CCBCheckStatusCmd – The check-status command

On receiving this command the CCB server replies to the manager with a CCBStatusReply
message over the command connection. After sending a series of commands to the server,
the manager can use this command to check that all of those commands were accepted for
execution by the server. It can also be used to check the health of the CCB.

check-status commands are exchanged with the communications library using structures of
the following type.

typedef struct {

CCBControlCmdHeader header; /* The control-message header */

} CCBCheckStatusCmd;

2.4.8 CCBShutdownCmd – The shutdown command

On receiving this command the CCB server places the hardware in standby mode, disables
CCB interrupts, unloads the CCB device driver, then uses the linux reboot() system call
to shutdown linux, and if possible turn off the real-time computer.

shutdown commands are exchanged with the communications library using structures of the
following type.

typedef struct {

CCBControlCmdHeader header; /* The control-message header */

} CCBShutdownCmd;

19

2.4.9 CCBRebootCmd – The reboot command

On receiving this command the CCB server places the hardware in standby mode, disables
CCB interrupts, unloads the CCB device driver, then uses the linux reboot() system call
to reboot linux.

reboot commands are exchanged with the communications library using structures of the
following type.

typedef struct {

CCBControlCmdHeader header; /* The control-message header */

} CCBRebootCmd;

2.5 Replies to CCB control commands

2.5.1 CCBCmdLinkReply – A reply to a test-link command

The CCB server sends a CCBCmdLinkReply message to the manager whenever it receives a
test-link command from the manager.

CCBCmdLinkReply replies are exchanged with the communications library using structures
of the following type.

typedef struct {

CCBControlReplyHeader header; /* The control-reply header */

} CCBCmdLinkReply;

2.5.2 CCBStatusReply – A reply to a check-status command

The CCB server sends a CCBStatusReply message to the manager whenever it receives a
check-status command from the manager.

CCBStatusReply replies are exchanged with the communications library using structures of
the following type.

typedef struct {

CCBControlReplyHeader header; /* The control-reply header */

unsigned cmds[CCB_NCMD]; /* The status of the */

/* last-received of each type */

/* of CCB command. */

20

unsigned hardware; /* The status of the CCB */

/* hardware. */

} CCBStatusReply;

The members of this structure are interpreted as follows.

• The status of the last-received of each type of command (CCBStatusRe-
ply::cmds)

This is an array of command-statuses, with one element for each of the defined CCB
commands, indexed by the corresponding CCBControlCmdType enumerator. The value
of each element is one of the following CCBCmdStatus enumerators.

typedef enum {

CCB_CMD_OK, /* The command was accepted */

CCB_CMD_BAD /* The command was rejected */

} CCBCmdStatus;

In the case of a CCB CMD BAD value, an error message will have been sent to the
manager via the telemetry link.

• The status of the CCB hardware (CCBStatusReply::hardware)

The value of this member is one of the following CCBHardwareStatus enumerators.

typedef enum {

CCB_HW_PROBLEM, /* The hardware isn’t responding */

CCB_HW_STANDBY, /* The hardware is in standby mode */

CCB_HW_ACTIVE /* The hardware is operational */

} CCBHardwareStatus;

In the case of a CCB HW PROBLEM value, an error message will have been sent to the
manager via the telemetry link.

3 The CCB telemetry link

Integrated data, monitoring data and log messages are sent to the manager via the server’s
telemetry link. In this section, the structures that are used to pass such messages to and
from the communications library are described. Note that these structures are not the form
in which data are sent via TCP/IP. That will be described later.

21

3.1 CCBTelemetryHeader – The common header of all telemetry mes-
sages

The first member of all telemetry message structures is a CCBTelemetryHeader structure,
which is defined as follows.

typedef struct {

CCBTelemetryType type; /* The type of telemetry message */

unsigned long date; /* The MJD UTC day number */

unsigned long tod; /* The time of day (ms since 0H UTC) */

unsigned long scan; /* The sequential ID of the parent scan */

} CCBTelemetryHeader;

The members of this structure are interpreted as follows.

• Message type (CCBTelemetryHeader::type)

This member identifies the type of telemetry message encoded in the parent structure.
This is expressed using an enumeration of the following type.

typedef enum {

CCB_INTEG_MSG, /* An integration data message */

CCB_MONITOR_MSG, /* A monitoring data message */

CCB_LOG_MSG /* A log message */

} CCBTelemetryType;

• The date at which the message was created (CCBTelemetryHeader::date)

This is the date at which the telemetry message was assembled. The date is expressed
in UTC, as a Modified Julian Day number. To be precise, this is the integer part of
(Julian Date− 2400000.5).

• The time-of-day at which the message was created (CCBTelemetryHeader::tod)

This is the time of day at which the telemetry message was assembled. The time of
day is provided as the number of milli-seconds that have passed since 0H UTC on the
day indicated by CCBTelemetryHeader::date.

• The sequential number of the parent scan (CCBTelemetryHeader::scan)

This identifies the scan during which the message was generated. Scans are identified
by the value of an integer counter in the device driver, which is initialized to zero
whenever the device driver is loaded, and thereafter incremented by one whenever
a new scan is started. In other words, whenever a new scan is started by either a

22

start-scan or stop-scan command, the device driver increments this counter by one.
Placing this in each data packet allows the manager to associate each integration with
the corresponding scan configuration parameters that were established before the new
scan was started.

Since all telemetry message structures share the same initial header structure, a pointer to
the following union of all message types can portably be used to pass messages of any type
to and from the communications library, with the header member of the union being used to
determine what type of message is actually stored there.

typedef union {

CCBTelemetryHeader header; /* The common telemetry header */

CCBIntegData integ; /* An integration data message */

CCBMonitorData monitor; /* A monitor data message */

CCBLogData log; /* A log message */

CCBTelemLinkReply link_ok; /* A reply to a test-link command */

} CCBTelemetryMessage;

3.2 CCBIntegData – Integration data messages

Integrated data are sent to the manager, at the end of each integration. The data are passed
to and from the communications library in a structure of the following form.

enum {CCB_MAX_INTEG=64}; /* The maximum number of total-power */

/* measurements from any instrument */

typedef struct {

CCBTelemetryHeader header; /* The telemetry message header */

unsigned long id; /* The integration ID */

unsigned long data[CCB_MAX_INTEG]; /* The integrated data */

} CCBIntegData;

The members of this structure are interpreted as follows.

• The common message header (CCBIntegData::header)

This member, which is common to all messages sent from the server to the manager,
identifies the type of message being sent.

• Integration ID (CCBIntegData::id)

This identifies the originating integration, by recording the value of the integration
counter in the device driver. This counter is reset to zero at the start of each new scan,

23

and thereafter incremented by 1 whenever a new integration interrupt is received from
the hardware. The manager can use this to check for missing integrations.

• Integrated data (CCBIntegData::data)

This is a sequence of 64 32-bit unsigned integer integration values.

3.3 CCBMonitorData – Monitor data messages

Instrumental monitoring data are sent to the manager over the telemetry link, at the end
of every CCBTelemetryCnf::monitor interval’th integration. The data are passed to and from
the communications library in a structure of the following form.

enum {CCB_MAX_MONITOR=?}; /* The maximum number of monitoring */

/* measurements from any instrument */

typedef struct {

CCBTelemetryHeader header; /* The telemetry message header */

unsigned long id; /* The monitor ID */

unsigned long data[CCB_MAX_MONITOR]; /* The monitor data */

} CCBMonitorData;

The members of this structure are interpreted as follows.

• The common message header (CCBMonitorData::header)

This member, which is common to all messages sent from the server to the manager,
identifies the type of message being sent.

• Monitor update ID (CCBMonitorData::id)

This is the value of another integer counter in the device driver. This counter is reset
to zero at the start of each new scan, and thereafter incremented by 1 whenever a new
integration interrupt is received from the hardware. The manager can use this to check
for missing integrations.

• Monitor data (CCBMonitorData::data)

This is a sequence of a currently unknown number of 32-bit unsigned integer monitoring
measurements.

3.4 CCBLogData – CCB log messages

The server sends both error and informational messages to the manager, to be logged. They
are passed to and from the communications library in a structure of the following form.

24

enum {CCB_MAX_LOG=?}; /* The maximum length of a log message */

typedef struct {

CCBTelemetryHeader header; /* The telemetry message header */

unsigned char msg[CCB_MAX_LOG]; /* The message to be logged */

} CCBLogData;

The members of this structure are interpreted as follows.

• The telemetry message header (CCBLogData::header)

This member, which is common to all telemetry messages, identifies the type of message
being sent.

• The log message (CCBLogData::msg)

Log messages are transfered as normal C-style strings, terminated by a ’\0’. Messages
that won’t fit within the CCB MAX LOG elements of the msg[] array, are truncated to
fit within the msg[] array, and terminated with a ’\0’ character in the last element of
this array.

3.5 CCBTelemLinkReply – A reply to a test-link command

The CCB server sends a CCBTelemLinkReply message to the manager whenever it receives a
test-link command from the manager.

CCBTelemLinkReply replies are exchanged with the communications library using structures
of the following type.

typedef struct {

CCBTelemetryHeader header; /* The telemetry message header */

} CCBTelemLinkReply;

25

