
The communications interface between the Ygor

manager and the CCB server.

Martin Shepherd, California Institute of Technology

February 7, 2003

This page intentionally left blank.

2

Abstract

This document documents the communications interface between the Ygor manager process
and the server of the Caltech Continuum Backend (CCB). It starts with a high-level overview
of the communications library, proceeds to describe the public communication API that
this library provides, and continues with descriptions of successively lower levels within the
library.

Contents

1 Introduction 6

1.1 The two TCP/IP links used by the library 6

1.2 Connection establishment . 7

1.2.1 Connection authentication . 7

1.2.2 Protocol authentication . 7

1.3 Telemetry connection establishment . 8

1.3.1 Initial configuration . 8

1.3.2 Single threaded versus multi-threaded 8

1.3.3 Library usage caveats . 9

2 The CCB client communications API 10

2.1 Connecting to a CCB server . 11

2.2 Disconnecting from a CCB server . 12

2.3 Querying the socket file-descriptors of a CCB link 12

2.4 Requesting non-blocking I/O . 13

2.5 I/O multiplexing . 13

2.6 Sending queued messages to the CCB server 14

2.7 Receiving control replies from the CCB server 15

2.8 Receiving telemetry replies from the CCB server 16

2.9 Registering a command-error callback function 16

2.10 Outgoing CCB commands . 17

2.10.1 Outgoing CCB configuration commands 18

ccb queue phase switch cnf() – Reconfiguring the phase-switches . . 18

ccb queue cal diode cnf() – Reconfiguring the calibration-diodes . . . 20

ccb queue telemetry cnf() – Reconfiguring the telemetry connection . 22

ccb queue timing cnf() – Acquisition-timing configuration 23

2

2.10.2 Outgoing CCB control commands . 24

ccb queue start scan cmd() – Queuing a start-scan command 25

ccb queue stop scan cmd() – Queuing a stop-scan command 25

ccb queue reset cmd() – Queuing a reset command 26

ccb queue standby cmd() – Queuing a standby command 26

ccb queue awaken cmd() – Queuing an awaken command 27

ccb queue test link cmd() – Queuing a test-link command 27

ccb queue check status cmd() – Queuing a check-status command . . 28

ccb queue shutdown cmd() – Queuing a shutdown command 28

ccb queue reboot cmd() – Queuing a reboot command 29

2.11 Incoming control-link replies . 29

ccb ctrl link reply callback() – Routing control-socket test-link replies 30

ccb ctrl status reply callback() – Routing check-status replies 30

2.12 Incoming telemetry messages . 31

ccb monitor data msg callback() – Routing telemetry monitor-data messages . 34

ccb integ data msg callback() – Routing telemetry integ-data messages . . . 34

ccb log msg callback() – Routing telemetry log-message messages 35

ccb telem link reply callback() – Routing telem-link-reply messages 36

2.13 Integration and scan timing information . 36

2.13.1 The calibration diode delay . 38

2.13.2 The number of measurements per cycle 39

2.13.3 The physical duration of an integration 39

2.13.4 The integration time of an integration 39

2.13.5 The duration of a scan . 40

2.14 Shared libraries and their versioning . 41

3 Library internals 42

3.1 The message translation layer . 44

3.1.1 Message structure specification . 44

3.1.2 Supported data-types within message structures 44

3.1.3 CCBNetMsg - The base-class of all messages 44

3.1.4 Some example message structures . 45

3.1.5 CCBNetMsgMember – Message field descriptions 45

3.1.6 CCBNetMsgInfo – Individual message descriptions 46

3

3.2 The CCB interface layer . 47

3.2.1 The message structures of outgoing control messages 48

CCBPhaseSwitchCnf – The phase-switching configuration command . 49

CCBCalDiodeCnf – The calibration diode configuration command . . 49

CCBTelemetryCnf – The telemetry configuration command 50

CCBTimingCnf – The acquisition-timing configuration command . . 50

CCBStartScanCmd – The start-scan command 51

CCBStopScanCmd – The stop-scan command 51

CCBResetCmd – The reset command 51

CCBStandbyCmd – The standby command 51

CCBAwakenCmd – The awaken command 52

CCBTestLinkCmd – The test-link command 52

CCBCheckStatusCmd – The check-status command 52

CCBShutdownCmd – The shutdown command 52

CCBRebootCmd – The reboot command 53

3.2.2 The message structures of incoming control-link replies 53

CCBCtrlLinkReply – A reply to a test-link command 53

CCBCtrlStatusReply – A reply to a check-status command 54

3.2.3 The message structures of incoming telemetry messages 54

CCBIntegData – Integration data messages 55

CCBMonitorData – Monitor data messages 55

CCBLogData – CCB log messages 56

CCBTelemLinkReply – A reply to a test-link command 56

3.3 Sending network messages . 56

3.4 Receiving network messages . 57

4

List of Figures

2.1 Example phase-switching cycles . 19

2.2 The anatomy of a data-scan or intra-scan . 37

3.1 The CCB communications stack . 43

5

Chapter 1

Introduction

Communications between the manager and the CCB server is implemented in a shared
communications library. As far as possible, this library hides the specifics of the communi-
cations protocols used, the buffering used for non-blocking I/O, and the queuing of output
messages. To facilitate the integration of the library with I/O-multiplexing event loops in the
manager and server processes, the library allows the calling application to query the socket
file-descriptors that are being used, and supports non-blocking socket I/O in both directions.
Since the manager and server will probably reside on different computers, and could poten-
tially be linked against different versions of the communications library, the opening dialog
between the two systems verifies compatibility between the message definitions seen by the
two systems. What follows is a high level description of how the library functions.

1.1 The two TCP/IP links used by the library

The CCB server process has two TCP/IP ports.

1. The control port

This port is used by the manager to send commands to the CCB server, and in some
cases, receive replies to these commands from the CCB server. The CCB server never
sends any unsolicited messages to the manager over this link, so it is effectively com-
pletely under the control of the server.

2. The telemetry port

This port is used by the server to send data to the manager. This includes integrated
radiometer data, monitoring data and log messages. The CCB manager never sends
messages to the server over this link, so this link is essentially under the control of the
CCB server. The classes of the data that are sent by the server over this link, and the

6

frequency with which periodic data are sent, are configurable via commands sent to
the server’s control port.

Within this document, discussion of communications on these links are documented from
the perspective of the manager. As such, words such as outgoing or incoming respectively
refer to messages sent and received by the manager.

1.2 Connection establishment

The manager starts by attempting to connect to the control port of the CCB server, using
a TCP/IP port number which is defined in an internal C header file, via the C macro CCB-
CONTROL PORT.

1.2.1 Connection authentication

For security reasons, the run-time configuration file of the CCB server includes a list of the
numeric IP addresses of the computers that are allowed to connect to the CCB server. An
asterisk in place of any of the numeric components of these addresses acts as a wild-card,
so it is possible to configure access to all computers within a given sub-domain via a single
entry.

If the connecting manager isn’t connecting from one of these authorized IP addresses, or a
new connection is attempted while a manager is already connected to the CCB server, the
new connection is rejected. In the case of a manager already being connected, the rejected
connection request is logged via the existing manager.

1.2.2 Protocol authentication

Although the server and the manager use a common communications library, there is po-
tential for different versions of this library being used by the two systems. If the message
definitions have been changed in one copy of the library, but not in the other, it is best
that this be detected when the control connection is first established during commissioning,
rather than waiting for an unfortunate observer to encounter the problem when the conflict-
ing message type is first exchanged. To do this, the connection establishment function of
the manager sends the CCB server a complete description of all of the control and telemetry
message types that it knows about. If the server detects any discrepancies between these
definitions and its own copy of the message definitions, it closes the control connection to
reject the incompatible server.

7

If the message definitions do match, the CCB server sends a single-byte connection acknowl-
edgment message to the manager, telling it that the connection has now been accepted, and
that it can proceed.

1.3 Telemetry connection establishment

Once a control connection to the CCB server has been accepted by the server, the CCB
server becomes receptive to connection requests to its telemetry server port, the number of
which is provided in a C macro called CCB TELEMETRY PORT, in an internal header of
the communications library. Only if the originating IP address of this connection-request
matches that used to establish the connection to the server’s control port, is the connection
accepted. Otherwise the server simply closes the suspicious connection.

Note that telemetry connections are closed automatically by the CCB server whenever the
manager closes its control connection.

1.3.1 Initial configuration

Once a new manager/server communications connection has been established, the CCB
server waits in standby mode. This allows the manager to override the server’s default
configuration parameters with its own, before sending an “on” command, to awaken the
CCB.

1.3.2 Single threaded versus multi-threaded

The discussions in this document assume that the library is being used from a single thread
within the manager, and that I/O is multiplexed using select() or poll(), combined with
non-blocking I/O. An alternative strategy would be to have reads from the control socket,
writes to the control socket, and reads from the telemetry socket all performed from different
threads within a multi-threaded manager, and for each of these threads to use blocking I/O.
The following approaches are aimed at facilitating this possibility:

• Reads and writes to the respective sockets are performed by calling different functions.

• The library uses no modifiable static data. All data structures are allocated from the
heap.

• The library uses POSIX thread-safe interfaces where available and uses POSIX thread
calls to control multi-threaded access to heap data and other shared resources.

8

To take advantage of this aspect of the library, the manager must observe the following rules.

• I/O in a given direction on a given socket should only be performed by a single thread
at a time. Note that queuing control messages for subsequent transmission can be per-
formed from multiple threads, since the queuing function is separate from the function
that actually sends these messages.

• The manager must not toggle the non-blocking attribute of the CCB sockets from one
thread while other threads are sending or receiving data over those sockets.

• When registering callback functions to be invoked when messages are received from
the control and telemetry connections, it is the manager’s responsibility to ensure that
these callbacks are thread safe, and that if the associated application callback data
object is shared between callbacks that are invoked by different threads, that it be
accessed in a thread-safe manner.

1.3.3 Library usage caveats

The following general rules must be observed by the manager when calling functions in the
public API of the communications library.

• None of the library functions are async-signal-safe, and should thus not be called from
signal handlers.

• Some callback functions are passed pointers to arrays as arguments. These functions
must assume that these pointers, and the arrays to which they point, become invalid
as soon as the callback function returns. If longer term access to their values is needed,
the callback must make its own copy.

For example, when log messages are sent to the manager by the log-message callback,
the error message string is discarded and its array potentially reused for a different
message as soon as the callback function returns.

9

Chapter 2

The CCB client communications API

The following sections describe the functions that the CCB communications library provides
for use by the manager. The following illustrates a typical time sequence of function calls
for a single-threaded manager.

1. Connect to the CCB server:
CCBClient *ccb = new_CCBClient(host);

2. Enable non-blocking I/O
ccb_client_non_blocking_io(client, 1);

3. Pass message-received callback functions to the library
ccb_cmd_error_callback(client, ...);

ccb_ctrl_link_reply_callback(client, ...);

ccb_ctrl_status_reply_callback(client, ...);

ccb_integ_data_msg_callback(client, ...);

ccb_log_msg_callback(client, ...);

ccb_telem_link_reply_callback(client, ...);

4. Queue CCB configuration commands for subsequent output:
ccb_queue_phase_switch_cnf(client, ...);

ccb_queue_cal_diode_cnf(client, ...);

ccb_queue_telemetry_cnf(client, ...);

ccb_queue_timing_cnf(client, ...);

5. Queue the first start-scan command:
ccb_queue_start_scan_cmd(client, ...);

6. Now invoke the manager’s event loop:
while(!shutdown_requested) {

unsigned status = ccb_io_status(client);

...Use select or poll to wait for the I/O specified in status...

10

if(data are available to be read from the telemetry link)

ccb_client_recv_telemetry_msgs(client);

else if(data are available to be read from the control link)

ccb_client_recv_control_msgs(client);

else if(it is possible to write to control link without blocking)

ccb_client_send_control_msgs(client);

else if(ygor command received) {

...

ccb_client_queue_*_cmd();

...

}

}

7. Disconnect from the CCB server
client = del_CCBClient(client);

As documented later, note that when ccb client recv control msgs() and ccb client recv telemetry-
msgs() receive messages, they call the appropriate callback function from the callbacks that
were registered in step 3, to deliver these messages to the manager.

2.1 Connecting to a CCB server

All manager interactions with the communications library are via C function calls. Con-
nection establishment to the CCB server is initiated by the new CCBClient() constructor
function.

CCBClient *new_CCBClient(const char *host);

In addition to establishing communications with the CCB server on the specified host, this
function returns a pointer to the opaque, dynamically allocated CCBClient object which
the communications library uses to manage the CCB communications link. Subsequently
this object should be passed to all library functions, to communicate with the specified host.
Note that since each CCBClient object returned by this function is dynamically allocated and
encapsulates all of the configuration and state information of the connection to the specified
CCB server, it is possible if desired, for a single manager to simultaneously communicate
with both the 3mm and the 1cm CCB servers. The value of the host argument, which should
contain the numeric or textual IP address of the target CCB server, determines which CCB
server is associated with each new CCBClient object.

If the communications link can’t be established, or there are insufficient resources available
to allocate the client object, the new CCBClient() function returns NULL.

11

Unless an error occurs, forcing new CCBClient() to cleanup and return NULL, this function
doesn’t return until it has fully established and authenticated the control and telemetry
connections to the specified CCB. Note that this is done using blocking socket I/O. Once
new CCBClient() returns, the caller has the option of switching communications to non-
blocking I/O, as will be described later.

2.2 Disconnecting from a CCB server

Closing a CCB connection is performed by deleting its resource object via a call to the
del CCBClient() function.

CCBClient *del_CCBClient(CCBClient *ccb);

This function both shuts down the specified connection to the CCB server, and returns all
resources in the given CCBClient object to the system. The function always returns NULL.
This allows the caller to type:

CCBClient *ccb;

...

ccb = del_CCBClient(ccb);

This sets the invalidated ccb pointer variable to NULL, such that if any statement subse-
quently tries to access the deleted object through this pointer, it will get a segmentation
fault, rather than producing unpredictable behavior.

2.3 Querying the socket file-descriptors of a CCB link

The socket file-descriptors of a given CCB connection, can be obtained via the ccb client-
sockets() function.

int ccb_client_sockets(CCBClient *ccb,

int *cntrl_socket,

int *telem_socket);

The file-descriptors of the control and telemetry connections are respectively assigned to
the variables pointed to by the cntrl socket and telem socket arguments. Either of these

12

arguments can be NULL if there is no interest in the respective socket. Normally this function
returns 0, but if client is NULL, a non-zero value is returned to report the error, and errno is
set to EINVAL.

The manager should not perform reads from, writes to, or reconfigure the returned file
descriptors. They are provided purely for use with the application’s choice of the select() or
poll() system calls to detect when I/O is possible.

2.4 Requesting non-blocking I/O

To prevent network congestion from blocking the manager process when it could be doing
other things, the ccb client non blocking io() function allows the manager to place the client
sockets into non-blocking I/O mode.

int ccb_client_non_blocking_io(CCBClient *ccb, int on);

This turns on non-blocking I/O when the on argument is non-zero, or turns it off when the
on argument is zero. On error, this function sets errno appropriately and returns non-zero.
Otherwise it returns zero to indicate success.

Used in conjunction with select() or poll() to perform I/O multiplexing, non-blocking I/O
allows the manager to do other things during network congestion.

In a multi-threaded manager this function should not be called when any other threads might
be reading from or writing messages to the CCB control and/or telemetry sockets.

2.5 I/O multiplexing

To perform I/O multiplexing it is necessary to use either select() or poll(), both to watch for
the ability to write without blocking when there are any messages to be sent, and to watch
for the arrival of data when incoming messages are expected. The library knows when control
replies are expected from the CCB server, and when data of outgoing messages remain to
be written, whereas the manager is the part responsible for watching for I/O, so the library
provides the manager with the ccb client io status() function to query which types of I/O it
should be watching for on the control and telemetry sockets.

unsigned ccb_client_io_status(CCBClient *ccb);

The return value of this function is a bitwise union of CCBIOStatus enumerators.

13

typedef enum {

CCB_CTRL_READ = 1, /* Read pending on control socket */

CCB_CTRL_WRITE = 2 /* Write pending on control socket */

CCB_TELEM_READ = 4, /* Read pending on telemetry socket */

} CCBIOStatus;

The return value is constructed as follows:

• CCB TELEM READ

This bit is always set, reflecting the fact that asynchronous telemetry data can arrive
at any time.

• CCB CTRL READ

Whenever the library finishes writing a message to the control link, it moves the corre-
sponding message structure from the queue of pending outgoing messages to the end of
a list of incomplete transactions. The message structure is subsequently removed from
this list when all of the replies that it is defined to elicit from the CCB server have
been received. Note that all control messages elicit at least an acknowledgment mes-
sage from the CCB server. Thus, when the list of incomplete transactions contains at
least one message, the return value of ccb client io status() includes CCB CTRL READ.

• CCB CTRL WRITE

When unsent messages remain in the library’s outgoing queue of control-messages, the
return value of ccb client io status() includes CCB CTRL WRITE.

Note that there is no CCB TELEM WRITE enumerator, because the manager doesn’t send
messages to the CCB server over the telemetry link.

Beware that in a multi-threaded manager, the return value of this function should be assumed
to be out of date before it can be used by the caller. Since this function is aimed at I/O
multiplexing within a single-threaded manager, this isn’t considered to be a problem.

2.6 Sending queued messages to the CCB server

Later sections describe the functions that the manager uses to queue the various types of out-
going control messages. The subsequent transmission of these messages is the responsibility
of the ccb client send control msgs() function.

int ccb_client_send_control_msgs(CCBClient *ccb);

14

This function writes as much as possible before returning. If the ccb client non blocking io()
function has previously been invoked to enable non-blocking I/O, and a write() to the control
socket blocks while attempting to send any of the queued messages to the CCB server, this
function returns immediately, otherwise it blocks until all unsent messages have been written
to the control socket. In both cases, unless an error occurs, ccb client send control msgs()
returns 0. On error non-zero is returned and errno is set to indicate the cause of the error.

Note that the inclusion of CCB CTRL WRITE in the return value of ccb client io status() can
be used to determine whether any control messages remain to be sent.

Beware that in a multi-threaded manager, ccb client send control msgs() must only be called
by one thread at a time.

2.7 Receiving control replies from the CCB server

As described later, the manager provides the library with a callback function for each of
the known types of replies received over the control connection, including error messages.
The ccb client recv control msgs() function reads replies from the control connection, and
delivers them to the manager by calling the corresponding callbacks. Note that this includes
the command-error callback function, since these error messages are received from the CCB
server over the control link.

int ccb_client_recv_control_msgs(CCBClient *ccb);

This function attempts to read all outstanding replies from the control connection. If the
ccb client non blocking io() function has previously been invoked to enable non-blocking I/O,
and a read() of the control socket blocks while attempting to read any of the expected
replies from the CCB server, this function returns immediately, otherwise it blocks until all
anticipated messages have been read from the control socket. In both cases, unless an error
occurs, ccb client recv control msgs() returns 0. On error non-zero is returned and errno is
set to indicate the cause of the error.

Note that the inclusion of CCB CTRL READ in the return value of ccb client io status() can
be used to determine whether any control replies remain to be read.

Beware that in a multi-threaded manager, ccb client recv control msgs() must only be called
by one thread at a time.

15

2.8 Receiving telemetry replies from the CCB server

As described later, the manager provides the library with a callback function for each of the
known types of incoming telemetry messages. The ccb client recv telemetry msgs() function
reads these messages from the telemetry connection, and delivers them to the manager by
calling the corresponding callbacks.

int ccb_client_recv_telemetry_msgs(CCBClient *ccb);

If the ccb client non blocking io() function has previously been invoked, ccb client recv telemetry-
msgs() keeps reading messages from the telemetry connection until the read blocks. Other-
wise, in blocking-I/O mode, ccb client recv telemetry msgs() attempts to read a single mes-
sage from the telemetry link, and blocks the caller until that message has been read. In
both cases 0 is returned unless an error is encountered. On error errno is set to indicate the
problem, and non-zero is returned.

Beware that in a multi-threaded manager, ccb client recv telemetry msgs() must only be
called by one thread at a time.

2.9 Registering a command-error callback function

Whenever the CCB server receives a command message from the manager, it examines the
contents of the message, then sends back an acknowledgment message to report whether any
problems were encountered. When the ccb client recv control msgs() function receives one of
these acknowledgment messages, if the message says that the command had a problem, ccb-
client recv control msgs() calls an error-reporting callback function provided by the manager.
To register this callback function, the manager calls ccb cmd error callback().

Just in case it is ever necessary to add arguments to this type of callback function, it
is recommended that the manager use the CCB CMD ERROR FN macro to both declare
function prototypes and define the function itself, and that any pointers that it records to
such callback functions be declared using the CCBCmdErrorFn typedef.

#define CCB_CMD_ERROR_FN(fn) int (fn)(CCBClient *ccb, void *data, \\

long id, CCBCmdError status)

typedef CCB_CMD_ERROR_FN(CCBCmdErrorFn);

int ccb_cmd_error_callback(CCBClient *ccb, CCBCmdErrorFn *fn, void *data);

16

The callback function is registered via the fn argument of ccb cmd error callback(), and any
application-specific resources to be passed to the callback are specified via the data argument.
The id argument of the callback function is passed the value of the message identifier that was
specified when the problematic command was queued by the manager. The status argument
of the callback is used to report coarse information about the error.

typedef enum {

CCB_CMD_GARBLED, /* The contents of the command message */

/* were invalid and couldn’t be fixed. */

CCB_CMD_IGNORED, /* The command didn’t make sense at this */

/* time, and was ignored. */

CCB_CMD_SYSERR /* An unexpected internal software or hardware */

/* error was encountered while while attempting */

/* to execute the command. */

} CCBCmdError;

This enumeration is in the public header file of the communication library, so to prevent ABI
problems if new error conditions are added, and somebody forgets to recompile either the
library, the CCB server, or the manager, new error enumerators should always be appended
to the end of the enumeration, rather than inserted, and old enumerators should not be
removed or reordered. With this caveat, if functions that use values from this enumeration
are prepared to handle values that they don’t know about, at worst an unknown error
condition will elicit a warning, rather than, say accessing a nonexistent element in an array
of error conditions, or associating the incorrect error condition with an enumerator.

Note that the reported error conditions aren’t meant to be very precise. For more detailed
information, the maintainer should look at the corresponding log messages that the CCB
server sends the manager via the telemetry connection. As such, it is hoped that few, if
any, new enumerators will need to be added. In practice, after debugging the manager
and the server, the only error that should be expected during normal operations should be
CCB CMD SYSERR, which will be sent if a hardware failure is detected. As such, adding
more finely targeted error conditions seems pointless, especially given that there isn’t much
that the manager can do in response, other than report which command evoked the error
messages that appear in the log, and perhaps attempt a CCB reset.

2.10 Outgoing CCB commands

The following two sections describe the configuration and control commands which are sent
to the CCB server over its control link. The functions that queue each of these commands,
all take the same two initial arguments, which are interpreted as follows.

17

1. A pointer to the CCBClient object that identifies the remote backend that the command
is to be sent to.

2. An arbitrary manager-chosen integer message-identifier to be passed to the applica-
tion’s error callback in the event that the CCB server encounters problems with this
command. This could, for example, be a manager-defined message-type enumerator,
or the value of a command sequence counter.

2.10.1 Outgoing CCB configuration commands

This section describes the public functions that are used to queue CCB configuration com-
mands for subsequent dispatch to the CCB server when ccb client send control msgs() is
called. Note that the changes to the configuration that these commands make, don’t take
effect until the next start-scan or stop-scan message is received by the CCB server.

Each of these functions returns an integer, which is 0 on success and non-zero otherwise.
On failure, which could, for example, be due to running out of memory to queue the new
message, or due to the manager passing invalid arguments, errno is set accordingly.

ccb queue phase switch cnf() – Reconfiguring the phase-switches

The digital backend generates two phase-switch TTL control signals, both of which are used
by the 1cm receiver, and only one of which is used by the 3mm receiver. The CCB server
supports the 16 phase-switching modes illustrated in figure 2.1.

Each row of this diagram displays the 4 possible cycles of a particular combination of active
switches, with each of these cycles corresponding to a different pair of initial phase-switch
states.

Note that whereas the number of A/D samples per measurement in this diagram is just an
example of what can be configured, the number of measurements per cycle is fixed by the
number of switches that are active, and is thus not otherwise configurable. In addition to
the parameters illustrated, it is also be possible to individually switch off each of the TTL
outputs, regardless of whether those outputs are configured to be switching or not. This
potentially reduces interference while other backends are controlling the phase switches.

Re-configuration of the phase switches is performed by first calling the ccb queue phase-
switch cnf() function to queue a phase-switch reconfiguration message, followed by one or
more calls to ccb client send control msgs() to send this to the CCB server.

int ccb_queue_phase_switch_cnf(CCBClient *ccb, long id,

unsigned active_switches,

18

Figure 2.1: Example phase-switching cycles

19

unsigned driven_switches,

unsigned initial_states,

unsigned samp_per_state);

The arguments of this function are interpreted as follows.

• Which switches are active? (active switches)

The two least-significant bits of this integer control which of the two phase switches
should be switched, and which should be held in the phase-switch states specified by
the initial states parameter. A bit value of 0 indicates that the corresponding switch
should be held in its initial position, whereas a bit value of 1 indicates that it should
be switched according to the current switching mode.

• Which switches are driven? (driven switches)

The 2 least-significant-bits of this parameter control which of the 2 phase-switch control
lines are driven. When they aren’t being driven, other backends can control the phase
switches. A bit value of 1 causes the corresponding line to be driven, whereas a value
of zero causes it to be placed in a high impedance state.

• Which switches start closed? (initial states)

The 2 least-significant-bits of this parameter specify the states that the 2 phase switches
must have at the start of each new phase-switch cycle. Switches that aren’t configured
to be switching by the active switches parameter are held in these states throughout
each cycle.

• Samples per phase-switch state (samp per state)

This parameter configures the number of A/D samples that are integrated between
changes in the states of either phase-switch. Since the underlying state machine for
each cycle is clocked by the sample clock, and there is room for 32 states per cycle, the
product of the number of samples per measurement and the number of measurements
per cycle sets an upper limit on the value of this parameter as follows:

Number of enabled Maximum number of
phase-switches samples per measurement

0 32
1 16
2 8

ccb queue cal diode cnf() – Reconfiguring the calibration-diodes

The digital backend generates two noise-diode TTL control signals, both of which are used
by the 1cm receiver, and only one of which is used by the 3mm receiver. Since the device

20

driver sets the on/off state of these diodes at the boundaries between integrations, each
cal-diode state lasts an integral number of integrations. For each scan it is thus necessary
to specify the sequence of states that the noise-diodes should go through, and how many
integrations each state should last. This sequence starts with the first integration of the
scan, and thereafter is repeated indefinitely until the next scan is started. Since it isn’t clear
how many calibration steps might be needed for future observations, the maximum number
of steps is parameterized as CCB MAX NCAL, which is defined in the public include file of
the communications library.

enum {CCB_MAX_NCAL=32}; /* The maximum number of calibration steps */

The configuration of the calibration diodes is changed by first calling the ccb queue cal diode-
cnf() function to queue a cal-diode reconfiguration message, and then subsequently calling
ccb client send control msgs() to send this to the CCB server.

int ccb_queue_cal_diode_cnf(CCBClient *ccb, long id,

unsigned ncal,

unsigned driven_diodes,

const unsigned *diode_a,

const unsigned *diode_b,

const unsigned long *ninteg);

The arguments of this function, are as follows.

• The number of calibration steps (ncal)

The number of steps in the calibration diode state machine. This must be less than or
equal to CCB MAX NCAL.

Note that a value of zero can be used if the calibration diodes are to be left turned off
throughout the parent scan.

• The set of driven cal-diodes (driven diodes)

The 2 least significant bits of this parameter specifies which of the two calibration diode
control lines are to be driven. A value of 1 means that the corresponding line should
be driven, whereas a value of 0 means that it should be placed in a high impedance
state.

• The ncal states of diode A (diode a)

The first ncal elements of this array specify whether noise diode A is to be on or off in
the corresponding step of the calibration diode state machine. A value of 0 means off,
and a value of 1 means on.

This argument can be NULL if ncal is 0.

21

• The ncal states of diode B (diode b)

The first ncal elements of this array specify whether noise diode B is to be on or off in
the corresponding step of the calibration diode state machine. A value of 0 means off,
and a value of 1 means on.

This argument can be NULL if ncal is 0.

• The duration of each calibration step (ninteg)

Each of the first ncal elements of this parameter specify for how many integrations
the state of the corresponding stage of the calibration diode state machine should be
maintained. With an integration time of 1ms, the use of a 32-bit value translates to a
maximum duration of 48 days. This is clearly overkill, but a 16-bit value would only
support up to 65 seconds per state, which might not be enough.

This argument can be NULL if ncal is 0.

ccb queue telemetry cnf() – Reconfiguring the telemetry connection

The telemetry configuration command specifies what types of data are to be sent to the
manager by the CCB server, and how frequently they should be sent. This is sent by first
calling the ccb queue telemetry cnf() function to queue a telemetry configuration message,
then subsequently calling ccb client send control msgs() to send this message to the CCB
server.

int ccb_queue_telemetry_cnf(CCBClient *ccb, long id,

unsigned integ_period,

unsigned monitor_interval,

unsigned stream_selection);

The arguments of this function are as follows.

• The integration period (integ period)

This specifies the number of phase-switch cycles that are co-added to form the integra-
tions that are sent to the manager. The physical length of time that this corresponds to
depends on the length of an A/D sample and the number of samples per phase-switch
cycle.

• The monitoring update interval (monitor interval)

Instrumental monitoring data are sent to the manager with a period of this many
integrations.

22

• Data-stream selection (stream selection)

This parameter contains a bit-wise union of CCBTelemetryStream enumerators, used
to specify which of the radiometer, monitoring, and log message streams, should be
forwarded to the manager, and which should be discarded.

typedef enum {

CCB_INTEG_STREAM = 1, /* The stream of integrated data */

CCB_MONITOR_STREAM = 2, /* The stream of monitoring data */

CCB_LOG_STREAM = 4, /* The stream of log messages */

CCB_NO_STREAMS = 0, /* None of the above streams */

CCB_ALL_STREAMS /* All of the above streams */

= CCB_INTEG_STREAM |

CCB_MONITOR_STREAM |

CCB_LOG_STREAM

} CCBTelemetryStream;

Normally all streams are selected by the manager. However in standby mode, the
manager may wish to choose whether to completely ignore the backend, whether to
just select instrumental monitoring and log data, or whether to continue to receive all
data from the backend.

ccb queue timing cnf() – Acquisition-timing configuration

The acquisition timing configuration command specifies the durations of timers in the CCB
hardware. It is sent to the CCB server by first calling ccb queue timing cnf() to queue it for
dispatch, then subsequently calling ccb client send control msgs() to have it sent.

int ccb_queue_timing_cnf(CCBClient *ccb,

unsigned sample_dt,

unsigned phase_switch_dt,

unsigned analog_reset_dt,

unsigned long diode_rise_dt,

unsigned long diode_fall_dt);

The arguments of this function are interpreted as follows.

• A/D sample interval (sample dt)

This refers to the amount of time taken per A/D sample, including the time used to
blank phase-switch transitions, but not including the time spent resetting the analog
integrators. It is expressed as an integer multiplier of 100ns, and has a nominal value
of 250 (25µs).

23

• Phase-switch blanking interval (phase switch dt)

This specifies how much of the sample interval is lost to waiting for the phase switches
to settle after phase-switch transitions. It is expressed as an integer multiplier of 100ns.

• Integrator-reset blanking interval (analog reset dt)

This specifies how long to wait for the analog integrator to reset before starting to
integrate a new sample. It is expressed as an integer multiplier of 100ns, so for the
predicted reset-time of around 1µs, analog reset dtwould be 10.

• Calibration diode rise time (diode rise dt)

This specifies the minimum time to wait before starting any integration that starts
with either of the calibration diodes being newly switched on. It is expressed as an
integer multiplier of 100ns.

• Calibration diode fall time (diode fall dt)

This specifies the minimum time to wait before starting any integration that starts
with either of the calibration diodes being newly switched off. It is expressed as an
integer multiplier of 100ns.

2.10.2 Outgoing CCB control commands

This section describes the public functions that are used to queue CCB control commands, for
subsequent dispatch to the CCB server when ccb client send control msgs() is called. Unlike
the configuration commands of the previous section, the CCB server responds to control
commands as soon as it receives them.

Each of these functions returns an integer, which is 0 on success and non-zero otherwise.
On failure, which could, for example, be due to running out of memory to queue the new
message, or due to the manager passing invalid arguments, errno is set accordingly.

A summary of the available commands is given in the following table, along with the names
by which they are referred to elsewhere in the text.

Name Description
start-scan Start a new scan at the end of the current integration
stop-scan Start a new scan at the end of the current sample
reset Re-initialize the hardware.
standby Relinquish control of the receiver.
awaken Take control of the receiver.
test-link Request a link-verification reply.
check-status Request a status reply.
shutdown Shutdown the real-time CPU.
reboot Reboot the real-time CPU.

24

ccb queue start scan cmd() – Queuing a start-scan command

The start-scan command causes a new scan to be started on the 1-PPS boundary specified by
the date and tod parameters. If the command is received less than 1 integration time before
the specified time, the new scan is not started on the desired 1-PPS, but instead starts as
soon as possible, just like a stop-scan command. A log message is dispatched to alert the
operator when this happens.

The new scan adopts any changes to the configuration parameters that have been made since
the last start-scan or stop-scan command was received.

start-scan commands are sent by first calling ccb queue start scan cmd() to queue the com-
mand for dispatch, then subsequently calling ccb client send control msgs() to send it to the
CCB server.

int ccb_queue_start_scan_cmd(CCBClient *ccb, long id,

unsigned long date,

unsigned long tod);

The arguments of this function are interpreted as follows.

• The date at which to start the scan (date)

This is the date at which the scan should be started, expressed in UTC, as a Modified
Julian Day number. To be precise, this is the integer part of (Julian Date−2400000.5).

• The time-of-day at which to start the scan (tod)

This is the time of day at which the scan should be started, specified as the integer
number of seconds after 0H UTC on the day indicated by date. The scan starts at
the start of the specified second, provided that the command is received at least one
second in advance of this time.

ccb queue stop scan cmd() – Queuing a stop-scan command

This operates like the start-scan command, except that on receipt by the server/device-driver,
a new scan is started as quickly as possible, rather than waiting for a specified 1-PPS. The
resulting truncated integration from the previous scan is discarded.

Note that although this command starts a new scan, it is called stop-scan because it stops
an observing scan. The scan that it then starts, which can usefully be referred to as an
intra-scan, is basically a scan that is used only for monitoring purposes, and is not recorded
in the observer’s FITS file.

25

stop-scan commands are sent by first calling ccb queue stop scan cmd() to queue the com-
mand for dispatch, then subsequently calling ccb client send control msgs() to send it to the
CCB server.

int ccb_queue_stop_scan_cmd(CCBClient *ccb, long id);

ccb queue reset cmd() – Queuing a reset command

This command resets both the hardware and the device driver.

On receiving this command, the server tells the device driver to order the FPGA to reload
its firmware from EPROM. The device driver then disconnects from the CCB server process.
The CCB server process reacts to this by unloading and reloading the device driver. The
device driver then proceeds to detect and re-initialize the hardware with its built-in default
configuration parameters. The server then re-opens its connection to the device driver, then
sends the reloaded driver the current configuration parameters, then behaves as though a
standby command had been received.

reset commands are sent by first calling ccb queue reset cmd() to queue the command for dis-
patch, then subsequently calling ccb client send control msgs() to send it to the CCB server.

int ccb_queue_reset_cmd(CCBClient *ccb, long id);

ccb queue standby cmd() – Queuing a standby command

On receiving this command, the CCB server tells the hardware to stop driving any of the re-
ceiver control lines. Its argument also allows the manager to specify what forms of telemetry
data should continue to be sent to it.

standby commands are sent by first calling ccb queue standby cmd() to queue the command
for dispatch, then subsequently calling ccb client send control msgs() to send it to the CCB
server.

int ccb_queue_standby_cmd(CCBClient *ccb, long id,

unsigned stream_mask);

The arguments of this function are interpreted as follows.

• The telemetry data-stream selection mask (stream selection)

26

This parameter contains a bit-wise union of CCBTelemetryStream enumerators, specify-
ing which of the currently enabled telemetry streams should continue to be sent to the
manager. To determine this, the CCB server takes the union of the set of streams spec-
ified in this parameter with the set previously specified by the last CCBTelemetryCnf
command.

For example, if all currently enabled streams should continue to be sent, this parameter
should be specified as CCB ALL STREAMS, whereas if no streams should continue be
sent to the manager, it should be set to CCB NO STREAMS, and if all but the integra-
tion data should continue to be sent, it should be set to (CCB All STREAMS & ˜CCB-
INTEG STREAMS).

ccb queue awaken cmd() – Queuing an awaken command

On receiving this command, the server tells the hardware to start driving any receiver control
lines that are currently configured to be driven, and to start sending subsequent integrations
to the manager. It also undoes the effect of the telemetry stream mask that was specified
by the preceding standby command.

Note that a new scan isn’t automatically started by this command.

awaken commands are sent by first calling ccb queue awaken cmd() to queue the command
for dispatch, then subsequently calling ccb client send control msgs() to send it to the CCB
server.

int ccb_queue_awaken_cmd(CCBClient *ccb, long id);

ccb queue test link cmd() – Queuing a test-link command

On receiving this command the CCB server replies to the manager with a ctrl-link-reply
message over the control connection, and a telem-link-reply message over the telemetry con-
nection. This provides a means by which the manager can check if both the CCB server,
and its TCP/IP links are alive. The intention is that the following sequence of operations
be performed by the manager every few minutes.

1. The manager clears the two internal reply-received flags which it asserts whenever
telem-link-reply and ctrl-link-reply messages are received.

2. The manager then sends a test-link command to the CCB server.

3. Rather than waiting for a reply, the manager simply arranges to be notified when data
arrives over the command and telemetry links, then goes back to doing whatever it
was doing.

27

4. Subsequently, when a ctrl-link-reply message is received by ccb client recv control msgs()
or a telem-link-reply is received by ccb client recv telemetry msgs(), the manager’s cor-
responding callback function is invoked, as documented later, and this function asserts
the corresponding internal reply-received flag, then returns, to allow the manager to
continue doing whatever it was doing.

5. At the time at which the manager is due to send the next test-link command, it checks
that since the previous one was sent, both a ctrl-link-reply and a telem-link-reply have
been received, by checking the corresponding internal reply-received flags. If not, this
denotes a problem either with one of the links, or with the CCB server, and the manager
should alert the operator.

6. The manager goes back to step 1.

test-link commands are sent by first calling ccb queue test link cmd() to queue the command
for dispatch, then subsequently calling ccb client send control msgs() to send it to the CCB
server.

int ccb_queue_test_link_cmd(CCBClient *ccb, long id);

ccb queue check status cmd() – Queuing a check-status command

On receiving this command the CCB server replies to the manager with a ctrl-status-reply
message over the control connection. This reply, which is documented later, reports on the
health of the CCB.

check-status commands are sent by first calling ccb queue check status cmd() to queue the
command for dispatch, then subsequently calling ccb client send control msgs() to send it to
the CCB server.

int ccb_queue_check_status_cmd(CCBClient *ccb, long id);

ccb queue shutdown cmd() – Queuing a shutdown command

On receiving this command the CCB server places the hardware in standby mode, disables
CCB interrupts, unloads the CCB device driver, then uses the linux reboot() system call
to shutdown linux, and if possible turn off the real-time computer.

shutdown commands are sent by first calling ccb queue shutdown cmd() to queue the com-
mand for dispatch, then subsequently calling ccb client send control msgs() to send it to the
CCB server.

28

int ccb_queue_shutdown_cmd(CCBClient *ccb, long id);

ccb queue reboot cmd() – Queuing a reboot command

On receiving this command the CCB server places the hardware in standby mode, disables
CCB interrupts, unloads the CCB device driver, then uses the linux reboot() system call
to reboot linux.

shutdown commands are sent by first calling ccb queue reboot cmd() to queue the command
for dispatch, then subsequently calling ccb client send control msgs() to send it to the CCB
server.

int ccb_queue_reboot_cmd(CCBClient *ccb, long id);

2.11 Incoming control-link replies

This section describes the library functions that are used by the manager to register callback
functions for ccb client recv control msgs() to subsequently use to deliver control-link reply
messages.

Each of the callback-registration functions returns an integer, which is 0 on success and
non-zero otherwise. On failure, errno is set according to the error. The manager’s callback
functions are also required to return an integer, which should be 0 on success and 1 on failure.
When a callback reports an error in this way, it should also set errno appropriately, so that
when ccb client recv control msgs() responds to this by returning non-zero, the manager can
inspect errno to see what happened.

A summary of the possible control-link replies is given in the following table, along with the
names by which they are referred to elsewhere in the text.

Name Description
ctrl-link-reply A reply to a test-link command.
ctrl-status-reply A reply to a check-status command.

Beware that since all of the callback functions described below are C functions, whereas
the manager is a C++ program, within the manager, both the prototypes of the callbacks
and their definitions must be enclosed in extern "C" {} blocks. Along with each callback
function, the manager can specify an arbitrary void * pointer to be passed to the callback
whenever it is called. This should be used by the manager to pass the callback function
any resources that it needs to handle the corresponding reply message. In addition to this

29

pointer, each callback function is passed a pointer to the CCBClient object that received the
message, plus any arguments corresponding to the contents of the message.

ccb ctrl link reply callback() – Routing control-socket test-link replies

The public ccb ctrl link reply callback() function is used to register the callback function that
will subsequently be called by ccb client recv control msgs() whenever it receives a ctrl-link-
reply message. Just in case it is ever necessary to add arguments to this type of callback
function, it is recommended that the manager use the CCB CTRL LINK REPLY FN macro to
both declare function prototypes and define the function itself, and that any pointers that
it records to such functions be declared using the CCBCtrlLinkReplyFn typedef.

#define CCB_CTRL_LINK_REPLY_FN(fn) int (fn)(CCBClient *ccb, void *data)

typedef CCB_CTRL_LINK_REPLY_FN(CCBCtrlLinkReplyFn);

int ccb_ctrl_link_reply_callback(CCBClient *ccb, CCBCtrlLinkReplyFn *fn,

void *data);

The callback function is registered via the fn argument of ccb ctrl link reply callback(), and
any application-specific resources that should be passed to the callback are specified via the
data argument. ctrl-link-reply messages contain no information, since the fact that they are
received at all tells the manager that the control link is OK, so the callback function doesn’t
take any other arguments.

ccb ctrl status reply callback() – Routing check-status replies

The public ccb ctrl status reply callback() function is used to register the callback function
that will subsequently be called by ccb client recv control msgs() whenever it receives a ctrl-
status-reply message. Just in case it is ever necessary to add arguments to this type of
callback function, it is recommended that the manager use the CCB CTRL STATUS REPLY-
FN macro to both declare function prototypes, and to define the function itself, and that
any pointers to these callbacks be declared using the CCBCtrlStatusReplyFn typedef.

#define CCB_CTRL_STATUS_REPLY_FN(fn) int (fn)(CCBClient *ccb, void *data,

unsigned long status)

typedef CCB_CTRL_STATUS_REPLY_FN(CCBCtrlStatusReplyFn);

int ccb_ctrl_status_reply_callback(CCBClient *ccb,

CCBCtrlStatusReplyFn *fn, void *data);

30

The callback function is registered via the fn argument of ccb ctrl status reply callback(), and
any application-specific resources that should be passed to the callback are specified via
the data argument. The contents of the message are passed to the callback via the status
argument, which reports the overall health of the CCB software and hardware. This is
represented by a bit-wise union of CCBGeneralStatus enumerators, each of which represents
the value of a single bit within the status argument.

typedef enum {

CCB_LINK_DOWN = 1, /* The telemetry link is down */

CCB_BUFFER_FULL = 2, /* The telemetry output buffer filled */

/* up and hasn’t drained yet, so data */

/* are being discarded. */

CCB_HARD_FAULT = 4, /* A hardware fault has been detected */

CCB_SOFT_FAULT = 8, /* A software fault has been detected */

CCB_STANDING_BY = 16 /* The CCB is in standby mode */

} CCBGeneralStatus;

Beware that unless care is taken to subsequently recompile every component of the system
(and update this documentation), none of the existing values in this enumeration should
either be removed or have their values changed. If necessary, new enumerators can be
appended with the next highest unused power-of-2 value, and to support this possibility all
software that uses these values should not assume anything about the values of currently
undefined bits.

2.12 Incoming telemetry messages

As described above for incoming control-link reply messages, incoming telemetry messages
from the CCB server are delivered to the manager via callback functions. These are invoked
by the ccb client recv telemetry msgs().

Each of the callback-registration functions returns an integer, which is 0 on success and
non-zero otherwise. On failure, errno is set according to the error. The manager’s callback
functions are also required to return an integer, which should be 0 on success and 1 on failure.
When a callback reports an error in this way, it should also set errno appropriately, so that
when ccb client recv control msgs() responds to this by returning non-zero, the manager can
inspect errno to see what happened.

A summary of the possible telemetry messages is given in the following table, along with the
names by which they are referred to elsewhere in the text.

31

Name Description
monitor-data Instrumental monitoring data
integ-data Integrated radiometer data
log-message CCB log messages
telem-link-reply Telemetry-link replies to test-link commands

The following table indicates the buffering and prioritization of these messages, where mes-
sages with higher priority values, are always sent before lower priority messages.

Message type Priority Buffer size Buffer overflow disposition
monitor-data 0 1 message Overwrite the previous unsent message
integ-data 1 2MB (>= 30s) Discard new data while the buffer drains
log-message 2 Dynamic N/A
telem-link-reply 3 1 message Overwrite the previous unsent message

As can be seen, replies to test-link commands are given the highest priority, since they are
time sensitive. There is no need to queue these messages, since they contain no information,
so the output queue only has a single entry, which is overwritten every time that a new
telem-link-reply reply is requested.

log-message messages have the second highest priority, to prevent important messages from
being held up indefinitely. They are stored in a dynamically sized queue, since it is important
not to loose any of these messages. To guard against a rapidly repeated sequence of error
messages consuming all of the available memory, log message strings are recorded in a hash-
table, and each entry in the queue of log messages points at the corresponding hash-table
entry. Since their aren’t too many potential error messages, messages in the hash-table are
never removed once entered. Along with each message string, each hash-table entry also
records the time at which the string was last reported to the manager. So, whenever a log
message is generated, the manager looks it up in the hash table, adds it if it hasn’t been
added before, then looks to see if the same message has been reported within a certain period
(eg. 1 minute). If it has, then the server doesn’t redundantly report the repeated message to
the manager. This prevents a rapidly repeating error condition from hogging both memory
in the server, and the telemetry link.

integ-data messages have the next highest priority. They are stored in a large, fixed sized
ring buffer, with sufficient room to bridge reasonable periods of network congestion. If the
observer selects such a short integration period that the buffer becomes full; rather than new
messages overwriting old messages in the ring buffer, new messages are thrown away until
the buffer has completely drained. This potentially supports short periods of contiguous
data-taking at high data rates, interleaved with gaps when no data is recorded.

Finally, monitor-data messages have the lowest priority, since they are only intended as a
visual indication of the instantaneous health of the system. Old monitoring data isn’t very
useful, so the output buffer of unsent monitoring messages is only one message long, and if a

32

new monitor message is generated before the old one has been queued for transmission, the
old one is simply discarded and replaced with the new one.

The following sections describe the library functions used by the manager to register call-
back functions for ccb client recv telemetry msgs() to subsequently use to deliver telemetry
messages.

All telemetry message callback functions have 2 arguments in common, these being the
CCBClient object that received the message, and a pointer to a CCBTelemInfo structure,
which reports the date, time, and the value of the scan counter when the message was
originally generated.

typedef struct {

unsigned long date; /* The Modified Julian Day number */

unsigned long tod; /* The time of day in milliseconds */

unsigned long scan; /* The value of the scan counter */

} CCBTelemInfo;

The members of this structure are interpreted as follows.

• date

This is the date at which the telemetry message was assembled. The date is expressed
in UTC, as a Modified Julian Day number. Specifically, this is the integer part of
(Julian Date− 2400000.5).

• tod

This is the time of day at which the telemetry message was assembled. The time of
day is specified as the number of milli-seconds that have passed since 0H UTC on the
day indicated by the date argument.

• scan

This identifies the scan during which the message was generated, using the value of a
sequential scan counter.

start-scan and stop-scan commands are tagged on receipt with the value of this counter,
which is initialized to zero whenever the device driver is loaded, and thereafter incre-
mented by one whenever a new start-scan or stop-scan command is received. Whenever
the scan associated with one of these commands actually starts, the value of the scan
counter associated with that command is thereafter used as the value of the scan
counter to be included in subsequent telemetry messages.

Placing this value in each data packet allows the manager to associate each integration
with the corresponding scan configuration parameters that were instantiated when the
new scan was started.

33

ccb monitor data msg callback() – Routing telemetry monitor-data messages

Instrumental monitoring data are sent to the manager over the telemetry link, at the end of
every monitor interval’th integration, in a monitor-data message.

The public ccb monitor data msg callback() function is used to register the callback func-
tion that will subsequently be called by ccb client recv telemetry msgs() whenever it receives
a monitor-data message. Just in case it is ever necessary to add arguments to this type
of callback function, it is recommended that the manager use the CCB MONITOR DATA-
MSG FN macro to both declare function prototypes and define the function itself, and that
any pointers that it records to such functions be declared using the CCBMonitorDataMsgFn
typedef.

#define CCB_MONITOR_DATA_MSG_FN(fn) int (fn)(CCBClient *ccb, void *data,\\

const CCBTelemInfo *info, \\

unsigned long number, \\

const unsigned long *values,\\

unsigned nvalues)

typedef CCB_MONITOR_DATA_MSG_FN(CCBMonitorDataMsgFn);

int ccb_monitor_data_msg_callback(CCBClient *ccb, CCBMonitorDataMsgFn *fn,

void *data);

The callback function is registered via the fn argument of ccb monitor data msg callback(),
and any application-specific resources that should be passed to the callback are specified via
the data argument. The number argument is the value of an integer counter in the device
driver, used to give monotonically increasing numbers to each new monitor message within a
scan. This counter is reset to zero at the start of each new scan, and thereafter incremented
by 1 whenever a new monitor message is prepared for transmission. The manager can use
this to check for discarded monitor messages. The first nvalues elements of the array pointed
to by the values[] argument, contain the monitoring data points.

ccb integ data msg callback() – Routing telemetry integ-data messages

Integrated data are sent to the manager in integ-datamessages, at the end of each integration.

The public ccb integ data msg callback() function is used to register the callback function
that will subsequently be called by ccb client recv telemetry msgs() whenever it receives an
integ-data message. Just in case it is ever necessary to add arguments to this type of callback
function, it is recommended that the manager use the CCB INTEG DATA MSG FN macro to
both declare function prototypes and define the function itself, and that any pointers that
it records to such functions be declared using the CCBIntegDataMsgFn typedef.

34

#define CCB_INTEG_DATA_MSG_FN(fn) int (fn)(CCBClient *ccb, void *data, \\

const CCBTelemInfo *info, \\

unsigned long number, \\

const unsigned long *values,\\

unsigned nvalues)

typedef CCB_INTEG_DATA_MSG_FN(CCBIntegDataMsgFn);

int ccb_integ_data_msg_callback(CCBClient *ccb, CCBIntegDataMsgFn *fn,

void *data);

The callback function is registered via the fn argument of ccb integ data msg callback(), and
any application-specific resources that should be passed to the callback are specified via
the data argument. The number argument is the value of the scan counter, as previously
documented. The manager can use this to check for missing integ-data messages. The first
nvalues elements of the array pointed to by the values[] argument, contain the radiometer
integrations.

ccb log msg callback() – Routing telemetry log-message messages

The server sends both error and informational messages to the manager, to be logged. They
are sent as log-message messages over the telemetry link.

The public ccb log msg callback() function is used to register the callback function that will
subsequently be called by ccb client recv telemetry msgs() whenever it receives a log-message
message. Just in case it is ever necessary to add arguments to this type of callback function,
it is recommended that the manager use the CCB LOG MSG FN macro to both declare
function prototypes and define the function itself; and that any pointers that it records to
such functions be declared using the CCBLogMsgFn typedef.

#define CCB_LOG_MSG_FN(fn) int (fn)(CCBClient *ccb, void *data,\\

const CCBTelemInfo *info, \\

const char *msg)

typedef CCB_LOG_MSG_FN(CCBLogMsgFn);

int ccb_log_msg_callback(CCBClient *ccb, CCBLogMsgFn *fn, void *data);

The callback function is registered via the fn argument of ccb log msg callback(), and any
application-specific resources that should be passed to the callback are specified via the data
argument. The log message itself is passed as a normal ’\0’ terminated C string, via the
msg argument.

35

ccb telem link reply callback() – Routing telem-link-reply messages

When a test-link command is received by the CCB server, the server sends messages to the
manager over both the control and telemetry links. The telemetry side of this reply is passed
as a telem-link-reply message.

The public ccb telem link reply callback() function is used to register the callback function
that will subsequently be called by ccb client recv telemetry msgs() whenever it receives a
telem-link-reply message. Just in case it is ever necessary to add arguments to this type of
callback function, it is recommended that the manager use the CCB TELEM LINK REPLY-
FN macro to both declare function prototypes and define the function itself, and that any
pointers that it records to such functions be declared using the CCBTelemLinkReplyFn type-
def.

#define CCB_TELEM_LINK_REPLY_FN(fn) int (fn)(CCBClient *ccb, void *data,\\

const CCBTelemInfo *info)

typedef CCB_TELEM_LINK_REPLY_FN(CCBTelemLinkReplyFn);

int ccb_telem_link_reply_callback(CCBClient *ccb, CCBTelemLinkReplyFn *fn,

void *data);

The callback function is registered via the fn argument of ccb telem link reply callback(), and
any application-specific resources that should be passed to the callback are specified via the
data argument. telem-link-reply messages contain no information, so the callback function
has no further arguments.

2.13 Integration and scan timing information

The details of the timing of an integration are illustrated in figure 2.2. There are two
measures of integration time that are of interest to users and the manager.

1. The integration-time, which is the total amount of time during which data are being
accumulated within an integration. Note that this is the time spent accumulating data
within a single phase-switch state, not the total amount of time spent accumulating
data during an integration period.

2. The integration-duration, which is the total amount of clock time that passes between
the start of one integration period and the start of the next.

36

Figure 2.2: The anatomy of a data-scan or intra-scan

37

The integration-time is shorter than the integration-duration, both because the latter has
to be split evenly between the separate integrations of different phase-switch bins, but also
because of the delays that have to be inserted between ADC samples to account both for
the time spent resetting the integrator, and for the settling times of the phase-switches and
calibration diodes.

2.13.1 The calibration diode delay

The settling time of the calibration diodes is not constant from one integration to the next.
This is because:

1. At the start of the first integration of a new scan, the CCB doesn’t know what states
the calibration diodes and phase switches are currently in, so the initial calibration
diode delay has to be set to the maximum value of the phase-switch settling time and
the calibration diode rise and fall times.

2. At the start of the remaining integrations of the scan, the settling time of the calibration
diodes depends on whether diodes are being switched on or off. If both diodes are being
switched from the off state to the on state, then the settling time is their rise time.
If both diodes are being switched from the on state to the off state then the settling
time is their fall time. If one diode is being switched on and the other being switched
off, then the settling time is the largest of their rise and fall times. If neither diode is
changing state, then no settling time is needed.

This means that in general, the durations of neighboring integrations differ, and to determine
the duration of a given integration one needs to know its sequential number within the parent
scan, and the set of states through which the diodes cycle from one integration to the next.
To enable the manager to predict integration durations, the ccb cal diode delay() function is
provided for computing the diode-delay of a given integration within a scan.

unsigned long ccb_cal_diode_delay(CCBClient *ccb,

unsigned integration,

unsigned long diode_rise_dt,

unsigned long diode_fall_dt,

unsigned ncal,

const unsigned *diode_a,

const unsigned *diode_b,

const unsigned long *ninteg);

The integration argument is the sequential number of the integration within its parent scan,
starting at zero for the first integration. The remaining arguments are as documented for the

38

previously described ccb queue cal diode cnf() and ccb queue timing cnf() functions. The re-
turn value is the calibration-diode delay of the specified integration, expressed as a multiplier
of the 100ns period of the hardware clock.

2.13.2 The number of measurements per cycle

The total amount of time within an integration that is lost to phase-switch transitions and
resetting the analog integrator, depends on the number of measurements within a phase-
switching cycle. This, as previously illustrated in figure 2.1, depends on how many phase-
switches are configured to be switching, and can be calculated as:

measurements per cycle = 2nswitching (2.1)

Based on this equation, the ccb cycle length() function returns the number of measurements
per cycle, corresponding to a particular value of the previously documented active switches
argument of ccb queue phase switch cnf().

unsigned ccb_cycle_length(CCBClient *ccb, unsigned active_switches);

2.13.3 The physical duration of an integration

Using the above functions, the duration of a given integration can be expressed in C like:

t = ccb_cal_diode_delay(ccb, integration, ncal, diode_a, diode_b, ninteg)

+ integ_period * ccb_cycle_length(ccb, active_switches) *

* samp_per_state * (sample_dt + analog_reset_dt);

The return value is the duration of the integration, expressed as an integer multiplier of the
100ns period of the hardware clock. Beware that this equation will overflow if the duration
of an integration ever exceeds about 7 minutes.

2.13.4 The integration time of an integration

Similarly, using the above functions, the integration time of a phase-switching integration
can be expressed in C like:

t = integ_period * (sample_dt * samp_per_state - phase_switch_dt);

39

If no phase switching is being performed (ie. active switches == 0), then the corresponding
expression is simply:

t = integ_period * sample_dt * samp_per_state;

The results of both of these expressions is the integration time, expressed as an integer
multiplier of the 100ns period of the hardware clock. Beware that these expressions will
overflow if the integration time ever exceeds about 7 minutes.

2.13.5 The duration of a scan

Since in general the calibration diode settling time differs from one integration to the next,
the ccb scan duration() function is provided to compute the physical amount of time taken
by a scan of a given number of integrations. Scan durations commonly exceed the capacity
of a 32-bit 100ns multiplier, so this function returns the duration in a CCBInterval structure,
wherein the duration is split into seconds and nano-seconds.

typedef struct { /* A time interval (t=sec+1.0e9*ns) */

unsigned long sec; /* The number of complete seconds */

unsigned long ns; /* The number of nano-seconds */

} CCBInterval;

CCBInterval ccb_scan_duration(CCBClient *ccb, unsigned long integrations,

unsigned active_switches, unsigned samp_per_state,

unsigned integ_period, unsigned sample_dt,

unsigned phase_switch_dt, unsigned analog_reset_dt,

unsigned long diode_rise_dt,

unsigned long diode_fall_dt, unsigned ncal,

const unsigned *diode_a, const unsigned *diode_b,

const unsigned long *ninteg);

The integrations argument specifies the number of integrations within the scan. The re-
maining arguments have the same interpretations as the synonymous arguments of the ccb-
queue phase switch cnf(), ccb queue telemetry cnf(), ccb queue timing cnf(), and ccb queue-
cal diode cnf() functions.

This function tallies up the number of times each of the stages of the calibration-diode state-
machine is repeated during the scan, and scales these numbers by the corresponding settling
times. Account is taken for the first integration of the initial calibration cycle of a scan
potentially requiring a different calibration-diode delay than those of subsequent calibration
cycles.

40

2.14 Shared libraries and their versioning

The communications library is compiled as a shared library under both Solaris and Linux.
This brings the possibility of strict versioning support from the respective linkers, and the
ability to restrict which symbols are exported to application programs, thus preventing the
unsupported use of internal library functions. The versioning scheme implemented by the
Linux and Solaris run-time linkers is documented at

http://www.usenix.org/publications/library/proceedings/als2000/browndavid.html

The basic idea is that libraries have three version numbers, a major number, a minor number
and a micro number. These are used as follows:

• When a library update only involves modifications to the internal implementation of
the library, without any changes being made to the public interface, the micro version
number is incremented by 1. In this case an application can safely run against the new
shared library without needing to be recompiled.

• When the existing public interface is augmented with the addition of new functions,
without any changes being made to the interfaces of the existing public functions, the
minor version number is incremented by one, and the micro version number is reset to
zero. In this case a previously compiled application can run against the updated shared
library, without needing to be recompiled, but will obviously need to be recompiled if
it wishes to make use of any of the added features.

• When any aspect of the existing public interface is changed, the major version number is
incremented by one, and the minor and micro version numbers are reset to zero. Since
the new library isn’t backwardly compatible with the previous one, the application
needs to be recompiled before the run-time linker will allow it to use the new library
version. This kind of update should be avoided if at all possible.

To enhance the capabilities of the Solaris and Linux run-time linkers, a map file must be
used when the shared library is created. This lists the symbols that were added in each new
minor version of the library. This allows the run-time linker to check that all of the functions
that the application actually uses, are provided in the current version of the shared library,
even if the current shared library is older than the one that the application was originally
linked against.

Configuration of the communication library makefiles to support this scheme are performed
by a standard autoconf configure script, which if need be, can later be tailored to future
operating systems.

41

Chapter 3

Library internals

The communications library is comprised of three distinct layers. Going from the highest
level to the lowest level layer, the layers are as follows.

• The CCB interface layer. This is the only part of the library that is specific to the
CCB. In addition to providing the public-interface functions described above, it defines
all of the CCB message types and aggregates the resources of the control and telemetry
connections.

• The message translation layer. This layer interprets the message definitions specified
by the CCB interface layer.

• The packet buffer layer. For output messages this layer converts host-specific datatypes
to corresponding portable byte streams, and aggregates the results within the internal
packet buffer of the output stream, starting with a byte count, ready for transmission.
For input messages this layer is passed a completely read message within the internal
packet buffer of the input stream, and decomposes and decodes the contents of the
message into local datatypes.

• The I/O layer. This layer handles non-blocking reading and writing of the raw byte
streams of which each message is composed, using the initial 4-byte integer of each
message to determine how much to read and write.

This is illustrated in the communication stack shown in figure 3.1.

42

Figure 3.1: The CCB communications stack

43

3.1 The message translation layer

3.1.1 Message structure specification

In order to convert the contents of the previously described message structures to and from
portable network byte streams, the message-translation layer of the library needs to know
exactly what these structures contain, and how to access each of their members. This section
explains how this information is provided.

3.1.2 Supported data-types within message structures

Since the communications library can only encode and decode data-types that it knows
about, all message structures are required to have members that are declared using the
types described in the following table.

Enumerator Host data-type typedef name Network data-type
CCB NET BYTE signed char CCBNetByte 8-bit signed integer
CCB NET UBYTE unsigned char CCBNetUByte 8-bit unsigned integer
CCB NET SHORT short CCBNetShort 16-bit signed integer
CCB NET USHORT unsigned short CCBNetUShort 16-bit unsigned integer
CCB NET LONG long CCBNetLong 32-bit signed integer
CCB NET ULONG unsigned long CCBNetULong 32-bit unsigned integer
CCB NET FLOAT float CCBNetFloat 32-bit floating point
CCB NET DOUBLE double CCBNetDouble 64-bit floating point

Note that all integer types are transfered over the network in big-endian, 2’s-complement
format, and that the two floating point data-types are transfered in big-endian IEEE-754
format.

3.1.3 CCBNetMsg - The base-class of all messages

The communications library requires that the first member of all message structures be a
CCBNetMsg member.

typedef struct {

CCBNetLong type; /* The type of the parent message-structure */

} CCBNetMsg;

44

This allows message structures to be passed to the message translation layer of the library
using pointers to their initial CCBNetMsg structure. As will be described shortly, the value
of the type member of this structure refers the library to a description of the actual message
structure that has been passed.

3.1.4 Some example message structures

To see how the contents of message structures are described to the translation-layer of
the communications library, consider the following two example message structures, called
CCBExampleMsg1, and CCBExampleMsg2:

#define SDIM 20; /* The size of the example string member */

/* in the following message structure. */

typedef struct { /* Example message structure 1 */

CCNNetMsg base; /* The message identification header */

CCBNetUByte string[SDIM]; /* A string to be transmitted */

CCBNetUShort slen; /* strlen(string) */

} CCBExampleMsg1;

typedef struct { /* Example message structure 2 */

CCNNetMsg base; /* The message identification header */

CCBNetULong foo; /* A <= 32-bit unsigned number */

} CCBExampleMsg2;

3.1.5 CCBNetMsgMember – Message field descriptions

With the exception of the obligatory initial CCBNetMsg member, each member of each
message structure is described to the library using a CCBNetMsgMember structure.

typedef struct {

const char *name; /* The textual name of the member */

size_t offset; /* The byte-offset of the member in the */

/* local message structure */

NetDataType type; /* The enumerated data-type of the member */

int ntype; /* The number of elements in the member */

} CCBNetMsgMember;

The following example code shows how arrays of these CCBNetMsgMember structures are
used to describe the elements of the two example message structures.

45

#include <stddef.h>

#include "ccbnetcoms.h"

/* The description of the members of CCBExampleMsg1 */

static const CCBNetMsgMember ccb_example_msg1_members[] = {

{"string", offsetof(CCBExampleMsg1, string), CCB_NET_UBYTE, SDIM},

{"slen", offsetof(CCBExampleMsg1, slen), CCB_NET_USHORT, 1},

};

/* The description of the members of CCBExampleMsg2 */

static const CCBNetMsgMember ccb_example_msg2_members[] = {

{"foo", offsetof(CCBExampleMsg2, foo), CCB_NET_ULONG, 1},

};

3.1.6 CCBNetMsgInfo – Individual message descriptions

In addition to descriptions of the contents of each message type, the communications library
needs to know both the host-dependent size of the message data-structures, and a convenient
way for the various parts of the library to refer each other to a given type of message. Each
message is thus further described using a CCBNetMsgInfo structures.

typedef struct {

int type; /* The message-type enumerator */

const char *name; /* The name of this message-type */

const CCBNetMsgMember *member; /* Descriptions of each member */

int nmember; /* The number of elements in member[] */

size_t native_size; /* The host-dependent size of the */

/* the corresponding message structure */

} CCBNetMsgInfo;

The name field, which isn’t currently used by the library, may in future be used when printing
out the contents of messages for debugging purposes.

For a given network connection, the communications library needs separate descriptions of
the messages that it is expected to transmit, and those that it is expected to receive. To do
this the CCB interface layer registers two arrays of CCBNetMsgInfo structures per connection,
one describing outgoing messages, while the other describes incoming messages. The indexes
of elements in these arrays are the means by which the various parts of the library, at both
ends of the communications link, refer each other to a given message type. Since the index
associated with a given message type will change if somebody inserts a new message type

46

in the middle of a message-description array, the CCB interface layer assigns a copy of the
enumerator that it uses to refer to each message type, to the type field of the corresponding
CCBNetMsgInfo message-definition element. This allows the message-translation layer to
verify that these enumerators match the array indexes of the messages to which they refer.
Thereafter, whenever the CCB interface layer passes a message structure to the message-
translation layer for transmission over the network, it sets the CCBNetMsg::type member of
the structure accordingly, to tell the message-translation layer what type of message structure
it is being passed. Similarly, when the message-translation layer receives a message from the
network, it records the type of message that it received, in the CCBNetMsg::type member of
the structure that it returns.

Returning to the example, the types of the example messages would be enumerated, and
described in a message-definition array, as follows:

typedef enum {

CCB_EXAMPLE_MSG1, /* The index of the first example message */

CCB_EXAMPLE_MSG2 /* The index of the second example message */

} CCBExampleMsgTypes;

static const CCBNetMsgInfo ccb_example_messages[] = {

{CCB_EXAMPLE_MSG1, "example1", ccb_example_msg1_members,

NET_ARRAY_DIM(ccb_example_msg1_members), sizeof(CCBExampleMsg1)},

{CCB_EXAMPLE_MSG2, "example2", ccb_example_msg2_members,

NET_ARRAY_DIM(ccb_example_msg2_members), sizeof(CCBExampleMsg2)},

};

In this example CCBExampleMsgTypes associates symbolic names with the indexes of the
correspondingly messages in the ccb example messages[] array, while the latter array provides
the description of all messages for one direction of a communications link.

3.2 The CCB interface layer

For each of the message queuing and received-message callback functions in the public API,
the CCB interface layer defines a message structure for passing the corresponding message
to and from the message-translation layer of the library. The following sub-sections briefly
describe these structures. Note that since these structures are hidden within the communi-
cations library, provided that the library is compiled as a shared library, the contents of the
message structures can be rearranged without requiring a recompilation of the manager or
the CCB server.

47

3.2.1 The message structures of outgoing control messages

As previously mentioned, the message-translation layer requires that all messages being
transmitted over a particular network connection be internally enumerated by the CCB-
interface layer. This enumeration is used to communicate message types both between
the CCB-interface and message-translation layers of the library, and between the separate
message-translation layers at the two ends of the communications link. The CCBControl-
CmdType enumeration serves this role for outgoing messages on the control link.

typedef enum {

CCB_PHASE_SWITCH_CNF, /* A phase-switch config command */

CCB_CAL_DIODE_CNF, /* A cal-diode config command */

CCB_TELEMETRY_CNF, /* A telemetry config command */

CCB_TIMING_CNF, /* An timing config command */

CCB_START_SCAN_CMD, /* A start-scan command */

CCB_STOP_SCAN_CMD, /* A stop-scan command */

CCB_RESET_CMD, /* A reset command */

CCB_AWAKEN_CMD, /* An awaken command */

CCB_STANDBY_CMD, /* A standby command */

CCB_TEST_LINK_CMD, /* a test-link command */

CCB_CHECK_STATUS_CMD, /* a check-status command */

CCB_SHUTDOWN_CMD, /* A computer shutdown command */

CCB_REBOOT_CMD, /* A computer reboot command */

} CCBControlCmdType;

As documented in the description of the ccb cmd error callback() function, and evidenced by
the fact that all of the public functions for queuing control messages, have an id argument, all
outgoing control messages include a manager-provided integer identifier, which is used by the
CCB server to associate acknowledgment replies with the messages that they refer to. Beware
that this is unrelated to the internal enumerated IDs used by the library. All outgoing control
messages thus have two members in common, the mandatory CCBNetMsg initial member of
all CCB network messages, which contains the internal message-type identifier of the library,
and a manager-provided message identifier. To allow generic access to these two common
members by the CCB interface layer, regardless of control-message type, they are aggregated
into a CCBCtrlMsgHeader structure, which is the first member of all outgoing control-message
structures.

typedef struct {

CCBNetMsg base; /* The initial member of all messages */

CCBNetLong id; /* The manager’s identifier of the */

/* parent message. */

} CCBCtrlMsgHeader;

48

Since all message structures start with a CCBCtrlMsgHeader member, whose first member is a
CCBNetMsg object, a pointer to the head.base member of the following union of all outgoing
control-message structures can portably be used to exchange any of these messages between
the CCB-interface layer and message-translation layer of the communications library. The
actual type of message passed in this way can be determined from the type member of the
CCBNetMsg object.

typedef union {

CCBCtrlMsgHeader head; /* The common control message header */

CCBPhaseSwitchCnf phase_cnf; /* head.base.type=CCB_PHASE_SWITCH_CNF */

CCBCalDiodeCnf diode_cnf; /* head.base.type=CCB_CAL_DIODE_CNF */

CCBTelemetryCnf telem_cnf; /* head.base.type=CCB_TELEMETRY_CNF */

CCBTimingCnf timing_cnf; /* head.base.type=CCB_TIMING_CNF */

CCBStartScanCmd start_scan; /* head.base.type=CCB_START_SCAN_CMD */

CCBStopScanCmd stop_scan; /* head.base.type=CCB_STOP_SCAN_CMD */

CCBResetCmd reset; /* head.base.type=CCB_RESET_CMD */

CCBAwakenCmd awaken; /* head.base.type=CCB_AWAKEN_CMD */

CCBStandbyCmd standby; /* head.base.type=CCB_STANDBY_CMD */

CCBTestLinkCmd test_link; /* head.base.type=CCB_TEST_LINK_CMD */

CCBCheckStatusCmd chk_status;/* head.base.type=CCB_CHECK_STATUS_CMD */

CCBShutdownCmd shutdown; /* head.base.type=CCB_SHUTDOWN_CMD */

CCBRebootCmd reboot; /* head.base.type=CCB_REBOOT_CMD */

} CCBControlMessage;

CCBPhaseSwitchCnf – The phase-switching configuration command

The ccb queue phase switch cnf() function queues message structures of the following type,
ready for later exchange with the message translation layer.

typedef struct {

CCBCtrlMsgHeader head; /* head.base.type=CCB_PHASE_SWITCH_CNF */

CCBNetUShort active_switches; /* Which switches are active? */

CCBNetUShort driven_switches; /* Which switches are driven? */

CCBNetUShort initial_states; /* Which switches start closed? */

CCBNetUShort samp_per_state; /* Samples per phase-switch state */

} CCBPhaseSwitchCnf;

CCBCalDiodeCnf – The calibration diode configuration command

The ccb queue cal diode cnf() function queues message structures of the following type, ready
for later exchange with the message translation layer.

49

typedef struct {

CCBCtrlMsgHeader head; /* head.base.type=CCB_CAL_DIODE_CNF*/

CCBNetUShort ncal; /* The number of cal steps */

CCBNetUShort driven_diodes; /* The set of driven cal diodes */

CCBNetUShort diode_a[CCB_MAX_NCAL];/* The ncal states of diode A */

CCBNetUShort diode_b[CCB_MAX_NCAL];/* The ncal states of diode A */

CCBNetULong ninteg[CCB_MAX_NCAL]; /* The duration of each step, */

/* (number of integrations) */

} CCBCalDiodeCnf;

CCBTelemetryCnf – The telemetry configuration command

The ccb queue telemetry cnf() function queues message structures of the following type, ready
for later exchange with the message translation layer.

typedef struct {

CCBCtrlMsgHeader head; /* head.base.type=CCB_TELEMETRY_CNF */

CCBNetUShort integ_period; /* The integration period */

CCBNetUShort monitor_interval; /* The monitoring update interval */

CCBNetUShort stream_selection; /* The set of desired data streams */

} CCBTelemetryCnf;

CCBTimingCnf – The acquisition-timing configuration command

The ccb queue timing cnf() function queues message structures of the following type, ready
for later exchange with the message translation layer.

typedef struct {

CCBCtrlMsgHeader head; /* head.base.type=CCB_TIMING_CNF */

CCBNetUShort sample_dt; /* The duration of an A/D sample */

CCBNetUShort phase_switch_dt; /* The settling time of the phase */

/* switches. */

CCBNetUShort analog_reset_dt; /* The amount of time needed to */

/* reset the analog integrators. */

CCBNetULong diode_rise_dt; /* The rise time of a cal diode */

CCBNetULong diode_fall_dt; /* The fall time of a cal diode */

} CCBTimingCnf;

50

CCBStartScanCmd – The start-scan command

The ccb queue start scan cmd() function queues message structures of the following type,
ready for later exchange with the message translation layer.

typedef struct {

CCBCtrlMsgHeader head; /* head.base.type=CCB_START_SCAN_CMD */

CCBNetULong date; /* The MJD UTC day number */

CCBNetULong tod; /* The time of day (ms since 0H UTC) */

} CCBStartScanCmd;

CCBStopScanCmd – The stop-scan command

The ccb queue stop scan cmd() function queues message structures of the following type,
ready for later exchange with the message translation layer.

typedef struct {

CCBCtrlMsgHeader head; /* head.base.type=CCB_STOP_SCAN_CMD */

} CCBStopScanCmd;

CCBResetCmd – The reset command

The ccb queue reset cmd() function queues message structures of the following type, ready
for later exchange with the message translation layer.

typedef struct {

CCBCtrlMsgHeader head; /* head.base.type=CCB_RESET_CMD */

} CCBResetCmd;

CCBStandbyCmd – The standby command

The ccb queue standby cmd() function queues message structures of the following type, ready
for later exchange with the message translation layer.

typedef struct {

CCBCtrlMsgHeader head; /* head.base.type=CCB_STANDBY_CMD */

CCBNetUShort stream_mask; /* The telemetry selection mask */

} CCBStandbyCmd;

51

CCBAwakenCmd – The awaken command

The ccb queue awaken cmd() function queues message structures of the following type, ready
for later exchange with the message translation layer.

typedef struct {

CCBCtrlMsgHeader head; /* head.base.type=CCB_AWAKEN_CMD */

} CCBAwakenCmd;

CCBTestLinkCmd – The test-link command

The ccb queue test link cmd() function queues message structures of the following type, ready
for later exchange with the message translation layer.

typedef struct {

CCBCtrlMsgHeader head; /* head.base.type=CCB_TEST_LINK_CMD */

} CCBTestLinkCmd;

CCBCheckStatusCmd – The check-status command

The ccb queue check status cmd() function queues message structures of the following type,
ready for later exchange with the message translation layer.

typedef struct {

CCBCtrlMsgHeader head; /* head.base.type=CCB_CHECK_STATUS_CMD */

} CCBCheckStatusCmd;

CCBShutdownCmd – The shutdown command

The ccb queue shutdown cmd() function queues message structures of the following type,
ready for later exchange with the message translation layer.

typedef struct {

CCBCtrlMsgHeader head; /* head.base.type=CCB_SHUTDOWN_CMD */

} CCBShutdownCmd;

52

CCBRebootCmd – The reboot command

The ccb queue reboot cmd() function queues message structures of the following type, ready
for later exchange with the message translation layer.

typedef struct {

CCBCtrlMsgHeader head; /* head.base.type=CCB_REBOOT_CMD */

} CCBRebootCmd;

3.2.2 The message structures of incoming control-link replies

For incoming messages sent by the CCB server to the manager over the control-link, the
CCB-interface layer enumerates the known types of reply message as follows.

typedef enum {

CCB_CTRL_LINK_REPLY, /* A test-link reply */

CCB_STATUS_REPLY, /* A check-status reply */

} CCBControlReplyType;

Since all message structures start with a CCBNetMsg member, a pointer to the base member
of the following union of all incoming control-link message structures can portably be used
to exchange any control-link reply message between the internal layers of the library, with
the base.type member of the union being used to determine what type of message is actually
being passed.

typedef union {

CCBNetMsg base; /* The base-class of all messages */

CCBCtrlLinkReply ctrl_link; /* base.type = CCB_CTRL_LINK_REPLY */

CCBStatusReply status, /* base.type = CCB_STATUS_REPLY */

} CCBControlReplyMessage;

CCBCtrlLinkReply – A reply to a test-link command

Callback functions registered with ccb ctrl link reply callback() are invoked whenever a mes-
sage structure of the following type is received by the communications library.

typedef struct {

CCBNetMsg base; /* base.type=CCB_CTRL_LINK_REPLY */

} CCBCtrlLinkReply;

53

CCBCtrlStatusReply – A reply to a check-status command

Callback functions registered with ccb ctrl status reply callback() are invoked whenever a mes-
sage structure of the following type is received by the communications library.

typedef struct {

CCBNetMsg base; /* base.type=CCB_STATUS_REPLY */

CCBNetUlong status; /* The status of the CCB */

} CCBCtrlStatusReply;

3.2.3 The message structures of incoming telemetry messages

This section documents the data structures that are exchanged between the CCB interface
layer and the message translation layer at both ends of the telemetry link. The CCB interface
layer defines the following enumeration to distinguish between the various message types
encoded in these message structures.

typedef enum {

CCB_INTEG_MSG, /* An integration data message */

CCB_MONITOR_MSG, /* A monitoring data message */

CCB_LOG_MSG, /* A log message */

CCB_TEL_LINK_REPLY /* A reply to a test-link command */

} CCBTelemetryType;

The first member of all telemetry message structures is a CCBTelemetryHeader structure,
which is defined as follows.

typedef struct {

CCBNetMsg base; /* The base-class of all messages */

CCBNetULong date; /* The MJD UTC day number */

CCBNetULong tod; /* The time of day (millisec since 0H UTC) */

CCBNetULong scan; /* The sequential ID of the parent scan */

} CCBTelemetryHeader;

Note that the obligatory CCBNetMsg member of all network messages is the first member of
this structure. The remaining members are interpreted as documented earlier for the initial
members of all telemetry callback functions.

Since all telemetry message structures start with a CCBTelemetryHeader member, a pointer
to the head member of the following union can be used as a pointer to any type of telemetry

54

message. The base.type member of this header can then be used to determine which type of
telemetry message the pointer actually refers to.

typedef union {

CCBTelemetryHeader head; /* The common telemetry header */

CCBIntegData integ; /* An integration data message */

CCBMonitorData monitor; /* A monitor data message */

CCBLogData log; /* A log message */

CCBTelemLinkReply link_ok; /* A reply to a test-link command */

} CCBTelemetryMessage;

The data-structures within this union, are declared as follows.

CCBIntegData – Integration data messages

Callback functions registered with ccb integ data msg callback() are invoked whenever a mes-
sage structure of the following type is received by the communications library over the
telemetry link.

enum {CCB_MAX_INTEG=64}; /* The maximum number of total-power */

/* measurements from any instrument */

typedef struct {

CCBTelemetryHeader head; /* head.base.type=CCB_INTEG_MSG */

CCBNetULong id; /* The integration ID */

CCBNetULong data[CCB_MAX_INTEG]; /* The integrated data */

} CCBIntegData;

CCBMonitorData – Monitor data messages

Callback functions registered with ccb monitor data msg callback() are invoked whenever a
message structure of the following type is received by the communications library over the
telemetry link.

enum {CCB_MAX_MONITOR=?}; /* The maximum number of monitoring */

/* measurements from any instrument */

typedef struct {

CCBTelemetryHeader head; /* head.base.type=CCB_MONITOR_MSG */

CCBNetULong id; /* The monitor ID */

CCBNetULong data[CCB_MAX_MONITOR]; /* The monitor data */

} CCBMonitorData;

55

CCBLogData – CCB log messages

Callback functions registered with ccb log msg callback() are invoked whenever a message
structure of the following type is received by the communications library over the telemetry
link.

enum {CCB_MAX_LOG=?}; /* The maximum length of a log message */

typedef struct {

CCBTelemetryHeader head; /* head.base.type=CCB_LOG_MSG */

unsigned char msg[CCB_MAX_LOG]; /* The message to be logged */

} CCBLogData;

CCBTelemLinkReply – A reply to a test-link command

Callback functions registered with ccb telem link reply callback() are invoked whenever a mes-
sage structure of the following type is received by the communications library over the
telemetry link.

typedef struct {

CCBTelemetryHeader head; /* head.base.type=CCB_TEL_LINK_REPLY */

} CCBTelemLinkReply;

3.3 Sending network messages

As mentioned earlier, output control messages are queued for transmission in a queue of
message structures, then dispatched to the server by one or more calls to ccb client send-
control msgs(). While ccb client send control msgs() is running, if the I/O layer finishes
transmitting a message, the message-translation layer does the following.

1. It removes the message structure of the next oldest message from the queue.

2. It then calls a function in the packet-buffer layer which:

(a) Clears the output buffer and resets its read and write pointers to point to the
start of the buffer.

(b) Writes a zero-valued big-endian byte-count in the first 4 bytes of the buffer.

(c) Writes the enumerated type of the message, as passed to it by the message-
translation layer, expressed as an unsigned 2-byte big-endian integer.

56

(d) Increments the buffer write-pointer to point to the byte following the above two
items.

3. For each member within the message structure, the message-translation layer then calls
a function in the API of the packet-buffer layer, chosen according to the type of the
structure member, to have the value of the member appended to the current message
within the buffer. These functions all increment the buffer write-pointer to point to
the byte in the buffer which follows the data that they appended.

4. Once all structure members have been packed into the buffer, the message-translation
layer then calls a function of the packet-buffer API to terminate the message in the
buffer. This function replaces the zero-valued byte-count at the start of the buffer with
the count of the actual number of bytes used by the message in the buffer.

5. Finally, the message-translation layer calls a function in the I/O layer to start writing
the contents of the buffer to the control socket. As the I/O layer does this, it increments
the read-pointer of the packet-buffer, so that it knows from where to resume if the socket
blocks when non-blocking I/O is in use. If it completes writing the latest message, it
goes back to step one, to get the next unsent message. Otherwise, it returns control to
the manager, and tells the manager to call ccb client send control msgs() again when
output again becomes possible, so that it can resume sending the current message.

3.4 Receiving network messages

As already documented, messages are read from the telemetry port of the server by calling
ccb client recv telemetry msgs(). At the start of reading each new message, this function does
the following:

1. It tells the packet-buffer layer of the telemetry connection to clear its input buffer.
This also resets the read and write pointers of the buffer to point to its first byte.

2. It instructs the I/O layer to attempt to read the initial 4 byte, byte count into the
message buffer.

3. In practice, if non-blocking I/O is in effect, a few calls may be needed to ccb client-
recv telemetry msgs() before the byte count is completely read.

4. Once the I/O layer has the byte count, it knows how many more bytes it will need to
read to acquire the new message.

5. The I/O layer then attempts to read the rest of the message. Again, this may require
multiple calls to ccb client recv telemetry msgs() when non-blocking I/O is being used.

57

6. Once the message has been completely read into the input packet-buffer, the message
translation layer then decodes the message-type enumeration that follows the byte
count, and uses this to identify the type of the message within its table of message
definitions.

7. According to the member descriptions in the definition of the message, the message-
translation layer now calls the appropriate datatype-specific functions in the packet-
buffer layer to decode the values of each member of the message, and records the results
in an internal message structure.

8. The completed message structure is then passed up to ccb client recv telemetry msgs(),
which invokes the corresponding callback function to deliver the contents of the message
to the manager.

The equivalent procedure is of course performed for the replies received over the control link,
and this uses all of the same functions, except that ccb client recv control msgs() is called in
place of ccb client recv telemetry msgs() and different callback functions are called to deliver
messages to the manager.

58

Index

Function index
ccb cal diode delay() 38
ccb client io status() 13
ccb client non blocking io() 13
ccb client recv control msgs() 15
ccb client recv telemetry msgs() . . . 16
ccb client send control msgs() 14
ccb client sockets() 12
ccb cmd error callback() 16
ccb ctrl link reply callback() 30
ccb ctrl status reply callback() 30
ccb cycle length() 39
ccb integ data msg callback() 34
ccb log msg callback() 35
ccb monitor data msg callback() . . . 34
ccb queue awaken cmd() 27
ccb queue cal diode cnf() 20
ccb queue check status cmd() 28
ccb queue phase switch cnf() 18
ccb queue reboot cmd() 29
ccb queue reset cmd() 26
ccb queue shutdown cmd() 28
ccb queue standby cmd() 26
ccb queue start scan cmd() 25
ccb queue stop scan cmd() 25
ccb queue telemetry cnf() 22
ccb queue test link cmd() 27
ccb queue timing cnf() 23
ccb scan duration() 40
ccb telem link reply callback() 36
del CCBClient() 12
new CCBClient() 11

Datatype index
CCBAwakenCmd 52
CCBCalDiodeCnf 49
CCBClient 11

CCBCmdErrorFn 16
CCBControlCmdType 48
CCBCtrlLinkReply 53
CCBCtrlLinkReplyFn 30
CCBCtrlMsgHeader 48
CCBCtrlStatusReply 54
CCBCtrlStatusReplyFn 30
CCBGeneralStatus 31
CCBIntegData 55
CCBIntegDataMsgFn 34
CCBInterval 40
CCBIOStatus 13
CCBLogData 56
CCBLogMsgFn 35
CCBMonitorData 55
CCBMonitorDataMsgFn 34
CCBNetMsg 44
CCBNetMsgInfo 46
CCBNetMsgMember 45
CCBTelemInfo 33
CCBTelemLinkReply 56
CCBTelemLinkReplyFn 36
CCBCheckStatusCmd 52
CCBPhaseSwitchCnf 49
CCBRebootCmd 53
CCBResetCmd 51
CCBShutdownCmd 52
CCBStandbyCmd 51
CCBStartScanCmd 51
CCBStopScanCmd 51
CCBTelemetryCnf 50
CCBTelemetryHeader 54
CCBTelemetryStream 23
CCBTestLinkCmd 52
CCBTimingCnf 50

Macro index

59

CCB CMD ERROR FN 16
CCB CONTROL PORT 7
CCB CTRL LINK REPLY FN 30
CCB CTRL STATUS REPLY FN . . . 30
CCB INTEG DATA MSG FN 34
CCB LOG MSG FN 35
CCB MONITOR DATA MSG FN . . . 34
CCB TELEMETRY PORT 8
CCB TELEM LINK REPLY FN 36

60

